Réduction des endomorphismes

1. L'étude d'un endomorphisme u d'un espace vectoriel E consiste à identifier des sous-espaces vectoriels de E sur lesquels le comportement de u est aussi simple que possible.

Ι

Rappels

I.1 Endomorphisme canoniquement associé à une matrice

2. Bases canoniques

On note traditionnellement (E_1, \ldots, E_n) , la base canonique de l'espace $\mathfrak{M}_{n,1}(\mathbb{K})$ des matrices colonnes.

On identifie couramment les espaces vectoriels \mathbb{K}^n et $\mathfrak{M}_{n,1}(\mathbb{K})$, au sens où la même notation x est utilisée pour le vecteur

$$x = (x_1, \ldots, x_n) \in \mathbb{K}^n$$

et pour la matrice colonne

$$x = x_1 E_1 + \cdots + x_n E_n \in \mathfrak{M}_{n,1}(\mathbb{K})$$

qui représente ce vecteur dans la base canonique de \mathbb{K}^n .

2.1 On note $(E_{i,j})_{1 \le i \le n, 1 \le j \le p}$, la base canonique de $\mathfrak{M}_{n,p}(\mathbb{K})$, de telle sorte que la matrice

$$A = (a_{i,j})_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p} \in \mathfrak{M}_{n,p}(\mathbb{K})$$

peut être décomposée en

$$A = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{i,j} E_{i,j}.$$

Pour tout $1 \le j \le p$, la *j*-ième colonne de A est égale à

$$\sum_{i=1}^n a_{i,j} E_i \in \mathfrak{M}_{n,1}(\mathbb{K}).$$

Pour tout $1 \le i \le n$, la *i*-ième ligne de A est égale à

$$\sum_{i=1}^{p} a_{i,j}^{t} E_j \in \mathfrak{M}_{1,p}(\mathbb{K}).$$

2.2 \rightarrow Si E_i et E_j ont même taille, alors

$${}^{t}E_{i}E_{i}=\delta_{i,i}\in\mathbb{K}.$$

2.3 \rightarrow Si $E_i \in \mathfrak{M}_{n,1}(\mathbb{K})$ et $E_j \in \mathfrak{M}_{p,1}(\mathbb{K})$, alors

$$E_i^t E_i = E_{i,i} \in \mathfrak{M}_{n,p}(\mathbb{K}).$$

2.4 \rightarrow Si $E_{i,j} \in \mathfrak{M}_{n,p}(\mathbb{K})$ et $E_{k,\ell} \in \mathfrak{M}_{p,q}(\mathbb{K})$, alors

$$E_{i,i}E_{k,\ell} = \delta_{i,k}E_{i,\ell} \in \mathfrak{M}_{n,q}(\mathbb{K}).$$

3. Soit $A \in \mathfrak{M}_{n,p}(\mathbb{K})$.

3.1 Si $E_j \in \mathfrak{M}_{p,1}(\mathbb{K})$, alors le produit AE_j est la j-ème colonne de A.

3.2 Si $E_i\in\mathfrak{M}_{n,1}(\mathbb{K})$, alors le produit tE_iA est la i-ème ligne de A.

4. \bowtie On suppose que les espaces \mathbb{K}^p et \mathbb{K}^n sont rapportés à leurs bases canoniques respectives.

L'application linéaire canoniquement associée à une matrice A de $\mathfrak{M}_{n,p}(\mathbb{K})$ est l'application linéaire de \mathbb{K}^p dans \mathbb{K}^n représentée par la matrice A.

5. Si $A \in \mathfrak{M}_{n,p}(\mathbb{K})$, alors l'application

$$[X \mapsto AX] : \mathfrak{M}_{p,1}(\mathbb{K}) \to \mathfrak{M}_{p,1}(\mathbb{K})$$

est une application linéaire et sa matrice relative aux bases canoniques de $\mathfrak{M}_{p,1}(\mathbb{K})$ et $\mathfrak{M}_{n,1}(\mathbb{K})$ est la matrice A.

6. \bowtie L'image de $A \in \mathfrak{M}_{n,p}(\mathbb{K})$ est le sous-espace de $\mathfrak{M}_{n,1}(\mathbb{K})$ engendré par la famille des colonnes de A.

$$\operatorname{Im} A = \operatorname{Vect}(AE_1, \dots, AE_p) = \{AX, X \in \mathfrak{M}_{p,1}(\mathbb{K})\}\$$

7. Soit $A \in \mathfrak{M}_{n,p}(\mathbb{K})$.

7.1 \triangle Le noyau de A est le sous-espace de $\mathfrak{M}_{p,1}(\mathbb{K})$ défini par

$$X \in \operatorname{Ker} A \iff AX = 0.$$

7.2 Le noyau de A est réduit au vecteur nul si, et seulement si, l'application linéaire canoniquement associée à A est injective.

7.3 → Une matrice carrée est inversible si, et seulement si, son noyau est réduit au vecteur nul.

7.4 Méthode

Les vecteurs du noyau de *A* sont en bijection avec les relations de liaison entre les colonnes de *A* au sens où la matrice colonne

$$X = \alpha_1 E_1 + \alpha_2 E_2 + \dots + \alpha_p E_p$$

appartient à Ker A si, et seulement si, les colonnes $(C_j)_{1 \leqslant j \leqslant p}$ de A sont liées par la relation [3]

$$AX = \alpha_1 C_1 + \alpha_2 C_2 + \cdots + \alpha_n C_n = 0.$$

I.2 Matrices semblables

8.1 🛎 Soient A et B, deux matrices carrées. La matrice B est semblable à la matrice A lorsqu'il existe une matrice inversible P telle aue

$$B = P^{-1}AP$$
.

On note alors $B \equiv A$.

8.2 Soit $A = \mathfrak{Mat}_{\mathscr{B}}(u)$. La matrice B est semblable à A si, et seulement si, il existe une base \mathscr{C} telle que $B = \mathfrak{Mat}_{\mathscr{C}}(u)$.

8.3 \rightarrow Pour tout entier $n \geqslant 1$, la relation de similitude \equiv est une relation d'équivalence sur chaque espace $\mathfrak{M}_n(\mathbb{K})$.

8.4 \rightarrow Deux matrices semblables ont même rang, même trace et même déterminant.

9. Conjugaison des matrices

9.1 \rightarrow Quelle que soit la matrice $P \in GL_n(\mathbb{K})$, l'application

$$[M \mapsto P^{-1}MP]$$

est un automorphisme de l'algèbre $\mathfrak{M}_n(\mathbb{K})$.

Soient A et B, deux matrices semblables.

1. Quel que soit $k \in \mathbb{N}$, les matrices A^k et B^k sont semblables.

2. La matrice A est inversible si, et seulement si, la matrice B est inversible et dans ce cas, A^{-1} et B^{-1} sont semblables.

3. Pour tout polynôme $Q \in \mathbb{K}[X]$, les matrices Q(A) et Q(B) sont semblables. En particulier, Q(A) = 0 si, et seulement si, Q(B) = 0.

10. Matrices codiagonalisables

1. Deux matrices diagonales D_1 et D_2 commutent.

2. S'il existe une matrice inversible P telle que

$$P^{-1}AP = D_1$$
 et $P^{-1}BP = D_2$,

alors les matrices A et B commutent.

3. Si A et B représentent deux réflexions d'un plan euclidien dans une même base orthonormée, elles sont semblables à une même matrice diagonale. Les matrices A et B commutentelles?

11. Soient B et C, deux matrices semblables dans $\mathfrak{M}_n(\mathbb{C})$. Pour quels $x \in \mathbb{C}$ les matrices $(xI_n - B)^{-1}$ et $(xI_n - C)^{-1}$ sontelles semblables ?

12. Une matrice de rang 1 est semblable à une matrice dont toutes les colonnes, sauf la première, sont nulles. Plus précisément, si $A \in \mathfrak{M}_n(\mathbb{K})$ est une matrice de rang 1, alors :

— ou bien A est semblable à $E_{n-1,n}$;

— ou bien il existe $\theta \in \mathbb{K}$ tel que A soit semblable à $\theta E_{n,n}$.

Étudier la réciproque.

13. Parmi les matrices suivantes, déterminer celles qui sont semblables.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

14. Les matrices

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

sont semblables. Calculer A^n pour tout $n \in \mathbb{N}$.

15. Les matrices

$$A = \begin{pmatrix} 1 & 0 - 0 & 0 \\ | & | & 1 \\ 1 & | & | \\ 0 & 0 - 0 & 1 \end{pmatrix} \in \mathfrak{M}_{n+2}(\mathbb{K}) \quad \text{et} \quad B = \text{Diag}(0_n, I_2)$$

sont semblables.

16. Si les matrices A_1 et A_2 sont semblables dans $\mathfrak{M}_n(\mathbb{K})$, alors les matrices

$$\begin{pmatrix} A_1 & 0 \\ 0 & A_1 \end{pmatrix}$$
 et $\begin{pmatrix} A_2 & 0 \\ 0 & A_2 \end{pmatrix}$

sont semblables dans $\mathfrak{M}_{2n}(\mathbb{K})$.

I.3 Sous-espaces stables

17. L'image par $u \in L(E)$ d'un sous-espace F de E est un sous-espace vectoriel de E, qu'on note $u_*(F)$.

17.1 rightharpoonup Un sous-espace F est**stable** $par l'endomorphisme <math>u \in L(E)$ lorsqu'il contient son image par u:

$$u_*(F) \subset F$$
.

17.2 Le sous-espace $F = \text{Vect}(x_i, i \in I)$ est stable par u si, et seulement si, $u(x_i) \in F$ pour tout $i \in I$.

17.3 Si F et G sont deux sous-espaces stables par u, alors les sous-espaces F + G et $F \cap G$ sont stables par u.

17.4 Si F est stable par u, alors F est stable par Q(u) pour tout polynôme $Q \in \mathbb{K}[X]$.

17.5 Si $u \circ v = v \circ u$, alors Ker v et Im v sont stables par u.

Endomorphisme induit par restriction

$$\forall x \in F$$
, $u_F(x) = u(x)$.

19. Sous-espaces stables et polynômes en u

Soient F, un sous-espace vectoriel stable par u et u_F , l'endomorphisme de F induit par restriction de u. Alors

$$\forall P \in \mathbb{K}[X], \ \forall x \in F, \quad P(u_F)(x) = P(u)(x).$$

19.1 \Rightarrow Pour tout $P \in \mathbb{K}[X]$, un sous-espace F stable par u est aussi stable par P(u) et l'endomorphisme induit par restriction de P(u) à F est $P(u_F)$.

19.2 \rightarrow Soient E, un espace de dimension finie et $u \in GL(E)$. Si F est un sous-espace stable par u, alors $u_F \in GL(F)$, le sous-espace F est stable par u^{-1} et

$$(u^{-1})_F = (u_F)^{-1}$$
.

20. Traduction matricielle

On suppose que E est un espace vectoriel de dimension finie. **20.1** \rightarrow Il existe un sous-espace F stable par $u \in L(E)$ si, et seulement si, il existe une base \mathcal{B} de E telle que

$$\mathfrak{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

où les blocs A et C sont des matrices carrées.

Dans ce cas, la matrice A représente l'endomorphisme u_F induit par restriction de u à F.

20.2 Il existe une base \mathcal{B} de E et deux matrices carrées A et B telles que

$$\mathfrak{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

si, et seulement si, l'espace E est somme directe de deux sous-espaces stables par u.

21. Exemples élémentaires

1. Soient D, une droite vectorielle et f, un endomorphisme de D. Quelle est la nature géométrique de f?

2. Soient P, un plan vectoriel et $\mathcal{B} = (e_1, e_2)$, une base de P. On cherche à caractériser les endomorphismes de P dont la structure est la plus simple.

 $_{2.a}$ Quels sont les sous-espaces de P stables par une homothétie? une projection? une symétrie?

2.b Soit $f \in L(P)$. On suppose qu'il existe deux droites vectorielles F et G stables par f, telles que $P = F \oplus G$. Que dire des endomorphismes induits par restriction de f à F et à G?

2.c Soit f_0 , l'endomorphisme de P défini par

$$\mathfrak{Mat}_{\mathscr{B}}(f_0) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Quelles sont les dimensions possibles pour un sous-espace de P stable par f_0 ? Quels sont les sous-espaces stables par f_0 ? Existet-il deux sous-espaces stricts de P qui soient supplémentaires dans P et stables par f_0 ?

22. Soit u, l'endomorphisme de $E = \mathbb{R}^3$ représenté dans la base canonique par la matrice

$$A = \begin{pmatrix} 1 & 3 & -3 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

22.1 Le sous-espace G = [x - 3y + 2z = 0] est stable par u. La droite $F = \mathbb{R} \cdot (0,1,1)$ est stable par u. Les sous-espaces F et G sont supplémentaires dans E.

Soit (e_2, e_3) , une base de G. Il existe un vecteur $e_1 \in E$ tel que $\mathscr{C} = (e_1, e_2, e_3)$ soit une base de E pour laquelle

$$\mathfrak{Mat}_{\mathscr{C}}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{pmatrix}.$$

On peut choisir les vecteurs e_2 et e_3 de telle sorte que la matrice $\mathfrak{Mat}_{\mathscr{C}}(u)$ soit triangulaire.

I.4 Projections et décomposition en somme directe

23. \rightarrow *Soit* $p \in L(E)$, un projecteur. Alors $x \in \text{Im } p$ si, et seulement si, x = p(x).

24. Projections associées à une décomposition

On suppose connue une décomposition en somme directe de *E* :

$$(1) E = \bigoplus_{i \in I} E_i$$

où l'ensemble d'indices I est fini.

Pour tout $i \in I$, la projection p_i sur E_i parallèlement au sous-espace

$$F_i = \bigoplus_{j \neq i} E_j$$

est bien définie. Cet endomorphisme de *E* vérifie :

$$\operatorname{Im} p_i = E_i$$
, $\operatorname{Ker} p_i = F_i$.

Pour tout $x \in E$, la décomposition de x adaptée à la 24.2 décomposition (1) de E est

$$x = \sum_{i \in I} p_i(x).$$

24.3

$$x \neq 0_E \iff \exists i \in I, \quad p_i(x) \neq 0_E$$

La famille $(p_i)_{i \in I}$ des projections associées à la décom-24.4 position de *E* en somme directe vérifie :

$$\forall i \neq j, \quad p_i \circ p_j = 0 \qquad \text{et} \qquad \sum_{i \in I} p_i = I_E.$$

Étude réciproque

On suppose connue une famille finie $(p_i)_{i \in I}$ d'endomorphismes de E tels que

$$\forall i \neq j, \quad p_i \circ p_j = 0 \qquad \text{et} \qquad \sum_{i \in I} p_i = I_E.$$

25.1 Pour tout $i \in I$, l'endomorphisme p_i est un projecteur.

25.2 On en déduit une décomposition de *E* en somme directe :

$$E = \bigoplus_{i \in I} \operatorname{Im} p_i$$

et comme

$$\forall i \in I, \quad \operatorname{Ker} p_i = \bigoplus_{j \neq i} \operatorname{Im} p_j$$

les endomorphismes $(p_i)_{i \in I}$ sont les projections associées à cette décomposition de E.

Les sous-espaces vectoriels 26.

$$E_1 = \text{Vect}((1,0,1,0), (1,0,-1,0)),$$

$$E_2 = \mathbb{R} \cdot (0,1,0,3) \quad \text{et} \quad E_3 = \mathbb{R} \cdot (1,2,1,1)$$

définissent une décomposition de $E = \mathbb{R}^4$ en somme directe. Pour tout $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$,

$$p_2(x) = \frac{-x_2 + 2x_4}{5} \cdot (0, 1, 0, 3), \quad p_3(x) = \frac{3x_2 - x_4}{5} \cdot (1, 2, 1, 1)$$

et la matrice de p_1 relative à la base canonique est

$$P_1 = \frac{1}{5} \begin{pmatrix} 5 & -3 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -3 & 5 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

I.5 Polynômes en u et idéal annulateur

Suite de [6.82] – Soit $u \in L(E)$. Pour tout polynôme

$$P = a_0 + a_1 X + \dots + a_d X^d,$$

on définit l'endomorphisme P(u) de E par

$$P(u) = a_0 I_E + a_1 u + \dots + a_d u^d.$$

27.1 \rightarrow L'application de $\mathbb{K}[X]$ dans L(E) définie par

$$\mathcal{E}_u = [P \mapsto P(u)]$$

est un morphisme d'algèbres.

Si $P = QP_0 + R$, alors $P(u) = Q(u) \circ P_0(u) + R(u)$. Pour tout $v \in GL(E)$ et tout $P \in \mathbb{K}[X]$, 27.2

$$P(v^{-1} \circ u \circ v) = v^{-1} \circ P(u) \circ v.$$

Si le polynôme *P* est scindé : 27.4

$$P = c_d (X - \alpha_1)^{m_1} \cdots (X - \alpha_r)^{m_r},$$

alors

$$P(u) = c_d \cdot (u - \alpha_1 \operatorname{I}_F)^{m_1} \circ \cdots \circ (u - \alpha_r \operatorname{I}_F)^{m_r}.$$

Si $P = P_1 P_2 \cdots P_r$, alors 27.5

$$\forall \sigma \in \mathfrak{S}_r, \quad P(u) = P_{\sigma(1)}(u) \circ P_{\sigma(2)}(u) \circ \cdots \circ P_{\sigma(r)}(u).$$

Si $P = P_1 P_2 \cdots P_r$ et si $x \in \text{Ker } P_k(u)$ pour un $1 \le k \le r$, 27.6 alors $x \in \operatorname{Ker} P(u)$.

Polynômes en *u* [6.83]

Soit $u \in L(E)$.

28.1 \rightarrow L'image du morphisme \mathcal{E}_u est l'algèbre des polynômes en u. Cette sous-algèbre commutative de L(E) est notée $\mathbb{K}[u]$.

Quels que soient les polynômes P et Q dans $\mathbb{K}[X]$, les sous-espaces $\operatorname{Ker} P(u)$ et $\operatorname{Im} \tilde{P}(u)$ sont stables par Q(u).

Si deux endomorphismes u et v commutent, alors

$$\forall P, Q \in \mathbb{K}[X], \quad P(u) \circ Q(v) = Q(v) \circ P(u).$$

Si de plus v est inversible, alors u et v^{-1} commutent.

28.4 → Formule de la série géométrique

Quels que soient les polynômes P et Q et l'entier $n \in \mathbb{N}$,

$$P(u)^{n+1} - Q(u)^{n+1} = [P(u) - Q(u)] \circ [\sum_{k=0}^{n} P(u)^{n-k} \circ Q(u)^{k}].$$

28.5 → Formule du binôme

Quels que soient les polynômes P et Q et l'entier $n \in \mathbb{N}$,

$$[P(u) + Q(u)]^n = \sum_{k=0}^n \binom{n}{k} \cdot P(u)^k \circ Q(u)^{n-k}.$$

Idéal annulateur [6.84]

Soit $u \in L(E)$.

29.1 \triangle Le noyau du morphisme \mathcal{E}_u est un idéal de $\mathbb{K}[X]$, appelé **idéal annulateur** de u.

29.2 $otin Un polynôme <math>P \in \mathbb{K}[X]$ est un **polynôme annulateur** de u lorsque P(u) est l'endomorphisme nul.

29.3 Le degré d'un polynôme annulateur non nul est supérieur à 1.

29.4 Si *P* est un polynôme annulateur de *u*, alors tout multiple de P est un polynôme annulateur de u.

Si P et Q sont deux polynômes annulateurs non nuls de u, alors le reste de la division euclidienne de P par Q est encore un polynôme annulateur de *u*.

Pour toute matrice $M \in \mathfrak{M}_n(\mathbb{K})$, on définit de même un morphisme d'algèbres de $\mathbb{K}[X]$ dans $\mathfrak{M}_n(\mathbb{K})$ en posant

$$\forall P \in \mathbb{K}[X], \qquad \mathcal{E}_M(P) = P(M).$$

L'image du morphisme \mathcal{E}_M est l'algèbre $\mathbb{K}[M]$ des polynômes en M. Cette sous-algèbre de $\mathfrak{M}_n(\mathbb{K})$ est commutative.

Le noyau de ce morphisme est l'idéal annulateur de M. Les éléments de cet idéal, qui n'est pas réduit au polynôme nul [6.84], sont les **polynômes annulateurs** de *M*.

Entraînement

31. Questions pour réfléchir

- 1. Si A et B appartiennent à $\mathfrak{M}_n(\mathbb{K})$ et si P est une matrice inversible telle que $P^{-1}AP = B$, quelle est la taille de P?
 - 2. Quelles sont les matrices semblables à I_n ? à 0_n ?
- 3. Deux matrices de même déterminant sont-elles semblables?
 - 4. Deux matrices semblables sont équivalentes.
- 5. Une matrice $A\in\mathfrak{M}_n(\mathbbm{K})$ de rang r>0 telle que $A^2=0$ est semblable à

$$\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}$$
.

- 6. Toute matrice triangulaire supérieure est semblable à une matrice triangulaire inférieure.
- 7. Soient $u \in L(E)$ et $v \in L(F)$, les endomorphismes définis par $A = \mathfrak{Mat}_{\mathscr{C}}(u)$ et $B = \mathfrak{Mat}_{\mathscr{C}}(v)$.

Les matrices A et B sont semblables si, et seulement si, il existe un isomorphisme $\varphi \in L(F,E)$ tel que $v = \varphi^{-1} \circ u \circ \varphi$.

8. Pour tout isomorphisme φ : $E \to F$, la conjugaison

$$[u \mapsto \varphi \circ u \circ \varphi^{-1}]$$

est un isomorphisme d'algèbres de L(E) sur L(F).

9. Si F est un sous-espace de dimension finie, alors $u_*(F)$ est un sous-espace de dimension finie et

$$\dim[u_*(F)] \leq \dim F$$
.

Dans quel cas $u_*(F)$ et F ont-ils même dimension?

- 10. Un endomorphisme $f \in L(E)$ commute à un projecteur p si, et seulement si, les sous-espaces $\operatorname{Im} p$ et $\operatorname{Ker} p$ sont stables par f.
- 11. Quel que soit l'endomorphisme u, les sous-espaces Ker u et Im u sont stables par u.
- 12. Si le sous-espace F est stable par u et par v, alors F est stable par le **crochet de Lie** $[u,v]=u\circ v-v\circ u$.
 - 13. Soit $u \in L(E)$.
- 13.a Condition pour qu'il existe une application $v:F\to F$ telle que

$$\forall x \in F$$
, $v(x) = u(x)$.

- 13.6 Si une telle application v est définie, alors c'est un endomorphisme de F.
- 14. Comparer u, sa restriction $u_{|F}$ à F et l'endomorphisme u_F induit par restriction à F.
- 15. Un sous-espace stable par u^2 est-il stable par u? (Considérer une rotation ou une symétrie.)
 - 16. Soit $u \in GL(E)$. On suppose que

$$\mathfrak{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$

où la sous-matrice A est une matrice carrée.

- 16.a La sous-matrice C est carrée. La sous-matrice B est-elle carrée?
- 16.b Interpréter la matrice *A*.
- 16.c Quelle est la forme de la matrice $\mathfrak{Mat}_{\mathscr{B}}(u^{-1})$?
- 17. Soit $\mathcal{B} = (e_k)_{1 \le k \le n}$, une base de E et M, la matrice de u relative à la base \mathcal{B} . Condition sur M pour que le sous-espace $F = \text{Vect}(e_1, \dots, e_r)$ soit stable par u.
- 18. On suppose que $E = \text{Im } u \oplus \text{Ker } u$. Quelle est la forme de la matrice de u dans une base adaptée à cette décomposition de E?
- 19. Suite de [24.4] On suppose que E est un espace de dimension finie et on considère une base \mathcal{B} adaptée à la décomposition de E en somme directe. La matrice de la projection p_i relative à la base \mathcal{B} est diagonale et ses coefficients diagonaux sont égaux à 0 ou à 1.

20. Soient $(P_i)_{1\leqslant i\leqslant n}$, une famille de matrices de $\mathfrak{M}_d(\mathbb{K})$ telles que

$$\forall i \neq j, \quad P_i P_j = 0$$
 et $\sum_{i \in I} P_i = I_d$.

Il existe une matrice inversible Q telle que toutes les matrices $Q^{-1}P_iQ$ soient diagonales.

- 21. Comparer les écritures P(u)(x) et P(u(x)).
- 22. Comparer $[P(u)]^k$, $P(u^k)$ et $(P^k)(u)$ pour $k \in \mathbb{N}$.
- 23. Suite de [6.81] -
- 23.a Le commutant de u contient $\mathbb{K}[u]$.
- 23.6 Pour tout polynôme $P \in \mathbb{K}[X]$, le commutant de u est contenu dans le commutant de P(u).
- 24. Si u est nilpotent, alors $I_E u$ est inversible et son inverse est un polynôme en u.
- 25. Calculer $(\lambda I_E + u)^n$ lorsque u est un projecteur.
- 26. Un endomorphisme $u \in L(E)$ est nilpotent si, et seulement si, il existe $p \in \mathbb{N}$ tel que X^p soit un polynôme annulateur de u.
- 27.a Si P et Q sont deux polynômes annulateurs de u, alors leur pgcd est un polynôme annulateur de u.
- 27.6 Deux polynômes annulateurs de u ne peuvent être premiers entre eux.
 - 28. La dimension de $\mathbb{K}[u]$ est supérieure à 1. Cas d'égalité?
- 29. Si dim E = d, alors il existe un polynôme annulateur non nul de u dont le degré est inférieur à d^2 .
- 30.a Le monôme X^{n+1} est un polynôme annulateur de la dérivation sur $\mathbb{K}_n[X]$.
- 30.6 Le seul polynôme annulateur de la dérivation sur $\mathbb{K}[X]$ est le polynôme nul.

32. Relation de liaison minimale

Soit $(x_i)_{i \in I}$, une famille liée.

Il existe un entier $n_0 \in \mathbb{N}$ tel qu'il existe une sous-famille liée $(x_i)_{i \in J_0}$ de cardinal n_0 et que toute sous-famille $(x_i)_{i \in J}$ de cardinal strictement inférieur à n_0 soit libre.

Discuter l'unicité de l'entier n_0 ; de l'ensemble J_0 .

33. Exemples de familles libres

- **33.1** Pour tout $n \in \mathbb{N}$, on note δ_n , la suite dont tous les termes sont nuls, sauf le terme d'indice n qui est égal à 1. La famille $(\delta_n)_{n \in \mathbb{N}}$ est libre et engendre le sous-espace des suites nulles à partir d'un certain rang.
- 33.2 Les exemples suivants utilisent des arguments d'Analyse pour démontrer l'absence de relation de liaison autre que la relation triviale.
- 1. Une combinaison linéaire de fonctions continues est une fonction continue, donc la famille $(\mathbb{1}_{[a,+\infty[})_{a\in\mathbb{R}}$ est libre.
- 2. Une combinaison linéaire de fonctions dérivables est dérivable, donc la famille $([t\mapsto |t-a|])_{a\in\mathbb{R}}$ est libre.
- 3. Il arrive qu'on puisse, par dérivation ou par comparaison des ordres de grandeur, déduire d'une relation de liaison non triviale une autre relation de liaison sur un plus petit nombre de vecteurs.
 - 3.a La famille $([t \mapsto \exp(at)])_{a \in \mathbb{C}}$ est libre.
 - 3.b La famille $([t \mapsto \cos(at)])_{a \in \mathbb{R}_+}$ est libre.
 - 3.c La famille $([n \mapsto q^n])_{q \in \mathbb{R}}$ est libre.
- **34.** Pour tout $\lambda \in \mathbb{R}_+$, on note φ_{λ} la fonction $[x \mapsto x^{\lambda}]$.
- 1. On considère les φ_{λ} comme des fonctions de [0,1] dans \mathbb{R} . Elles ont des ordres de grandeur différents au voisinage de l'origine, donc la famille $(\varphi_{\lambda})_{\lambda \in \mathbb{R}_+}$ est une famille libre.
- 2. De même, les fonctions φ_{λ} , considérées comme des fonctions de $[1,+\infty[$ dans $\mathbb R$ ont des ordres de grandeur différents au voisinage de l'infini, donc la famille $(\varphi_{\lambda})_{\lambda\in\mathbb R_+}$ est une famille libre.
- 3. Quel que soit l'intervalle I de longueur strictement positive, les fonctions φ_{λ} considérées comme des fonctions de I dans $\mathbb R$ sont linéairement indépendantes. \rightarrow [54.5]

35. Les endomorphismes de \mathbb{R}^3 définis par

$$f_1(x,y,z) = (x,0,0), f_2(x,y,z) = (y,0,0), f_3(x,y,z) = (z,0,0)$$

sont linéairement indépendants alors que la famille

$$(f_1(u), f_2(u), f_3(u))$$

est liée pour tout $u \in \mathbb{R}^3$.

36. Si le noyau et l'image de $M \in \mathfrak{M}_n(\mathbb{K})$ sont en somme directe, alors M est semblable à une matrice de la forme

$$\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$$
,

où A est une matrice inversible.

37. Soit $M \in \mathfrak{M}_n(\mathbb{R})$, telle que Ker $M = \operatorname{Im} M$. L'entier n est pair et la matrice $M + {}^tM$, qui est semblable à

$$\begin{pmatrix} 0 & I_d \\ I_d & 0 \end{pmatrix}$$
,

est inversible.

38. Symétries et sommes directes

1. La représentation cartésienne des nombres complexes

$$\forall z \in \mathbb{C}, \quad z = \mathfrak{Re}(z) + i \mathfrak{Im}(z)$$

est associée à une décomposition de $\mathbb C$ en somme directe.

2. La décomposition des applications de $\mathbb R$ dans $\mathbb R$ en somme d'une fonction paire et d'une fonction impaire :

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

est associée à une décomposition de $\mathscr{A}(\mathbb{R},\mathbb{R})$ en somme directe.

3. La décomposition des matrices carrées en somme d'une matrice symétrique et d'une matrice antisymétrique :

$$M = \frac{M + {}^t M}{2} + \frac{M - {}^t M}{2}$$

est associée à une décomposition de $\mathfrak{M}_n(\mathbb{K})$ en somme directe.

- 4. Généraliser.
- **39.** Soit $E = \mathbb{R}_n[X]$. Pour tout $0 \le i \le n$, on note F_i , l'ensemble des polynômes $P \in E$ tels que P(j) = 0 pour tout entier $0 \le j \le n$ distinct de i. Alors $E = F_0 \oplus F_1 \oplus \cdots \oplus F_n$.
- **40.** On suppose que $E = F_1 \oplus F_2 = G_1 \oplus G_2$, que $F_1 \subset G_2$ et que $G_1 \subset F_2$. Alors $E = F_1 \oplus G_1 \oplus (F_2 \cap G_2)$.

41. Polynômes interpolateurs

41.1 Soient $d \in \mathbb{N}$ et $(a_k)_{0 \le k \le n}$, une famille de scalaires deux à deux distincts. Le nuage de points

$$(a_k, a_k^d)_{0 \le k \le n}$$

admet un polynôme interpolateur évident : lequel? Relier ce polynôme à

$$\sum_{k=0}^{n} a_k^d L_k.$$

À quelle condition sont-ils égaux?

41.2 Soient $(a_k)_{1 \leqslant k \leqslant r}$, une famille de scalaires deux à deux distincts et deux familles de matrices $(A_k)_{1 \leqslant k \leqslant r}$ et $(B_k)_{1 \leqslant k \leqslant r}$ telles que

$$\forall q \in \mathbb{N}, \quad \sum_{k=1}^r a_k^q A_k = \sum_{k=1}^r a_k^q B_k.$$

Alors $A_k = B_k$ pour tout $1 \le k \le r$.

41.3 Il existe des complexes a_1, \ldots, a_n deux à deux distincts tels que

$$\forall \ 1 \leqslant k < n, \quad \sum_{\ell=1}^{n} a_{\ell}^{k} = 0.$$

Existe-t-il des complexes $b_1, ..., b_n$ tels que

$$\forall \ 1 \leqslant k \leqslant n, \quad \sum_{\ell=1}^{n} b_{\ell}^{k} = 0 \quad ?$$

42. Soit $A \in \mathfrak{M}_n(\mathbb{K})$. On suppose que

$$M = A + \operatorname{tr}(M)I_n.$$

Que vaut tr(M)? Que vaut M?

43.1 Endomorphismes de rang 1

Soit $f \in L(E)$, un endomorphisme de rang 1.

1. Il existe une forme linéaire $\varphi \in E^*$ et un vecteur $u \in E$ tels que

(3)
$$\forall x \in E, \quad f(x) = \varphi(x) \cdot u.$$

Discuter l'unicité du couple (φ,u) . Relier le noyau et l'image de f à φ et à u.

- 2. Les endomorphismes f et f^2 sont proportionnels. Condition sur u et φ pour que f soit un projecteur?
- 3. Si g est un endomorphisme tel que g^2 soit proportionnel à g, le rang de g est-il égal à 1?

43.2 Matrices de rang 1

Soit $A \in \mathfrak{M}_n(\mathbb{K})$, une matrice de rang 1.

4. Il existe deux matrices colonnes U et V, non nulles, telles que

$$(4) A = U^t V.$$

Relier le couple (U, V) au couple (u, φ) de (3). Condition sur U et V pour que A soit symétrique? Expression de la trace de A en fonction de U et V? En déduire que

$$A^2 = \operatorname{tr}(A) \cdot A$$
.

5. La matrice A est une matrice de projection si, et seulement si, ${}^tVU=1$.

43.3 Suite de [12] – Soient A et B, deux matrices de $\mathfrak{M}_n(\mathbb{R})$. Si $\operatorname{rg} B = 1$, alors

$$\det(A+B)(A-B) \leq (\det A)^2$$
.

44. Lemme d'Hadamard

Si $A = (a_{i,j})_{1 \le i,j \le n} \in \mathfrak{M}_n(\mathbb{C})$ est une matrice à **diagonale fortement dominante** :

$$\forall \ 1 \leq i \leq n,$$

$$\sum_{\substack{1 \leq j \leq n \\ j \neq i}} |a_{i,j}| < |a_{i,i}|,$$

alors [7.3] elle est inversible.

45. Commutant d'un endomorphisme cyclique [6.81]

Soit f, un endomorphisme de l'espace vectoriel \bar{E} .

45.1 On suppose qu'il existe un vecteur $x_0 \in E$ tel que la famille

$$(x_0, f(x_0), \ldots, f^{n-1}(x_0))$$

soit une base de E et on note \mathscr{C} , le commutant de f.

- 1. Quelle est la dimension de *E*? Que dire du rang de *f*?
- 2.

$$\mathscr{C} = \operatorname{Vect}_{\mathbb{K}}(I_E, f, \dots, f^{n-1})$$

3. Comparer les dimensions de \mathscr{C} et de $\mathbb{K}[f]$. Comparer avec le résultat du [**6.85.** 5].

45.2 Si $f^n = 0$ et $f^{n-1} \neq 0$, alors pour *tout* vecteur $x_0 \in E$ tel que $f^{n-1}(x_0) \neq 0$, la famille

$$(x_0, f(x_0), f^2(x_0), \dots, f^{n-1}(x_0))$$

est une base de E.

46. Endomorphismes de trace nulle et crochet de Lie

- 1. Quelles que soient les matrices A et B de $\mathfrak{M}_n(\mathbb{K})$, la trace de [A,B]=AB-BA est nulle.
 - 2. Soit $u \in L(E)$, un endomorphisme de trace nulle.
 - 2.a Que dire d'une homothétie de trace nulle?
- 2.b Si u n'est pas une homothétie, alors [65] il existe un vecteur $x_1 \in E$ tel que le couple $(x_1, u(x_1))$ soit une famille libre et une base de E dans laquelle la matrice de u est égale à

$$\begin{pmatrix}
0 & \star & --- & \star \\
1 & ---- & --- \\
0 & N_1 & \\
I & 0 & ---- \\
\end{pmatrix}$$

où $N_1 \in \mathfrak{M}_{n-1}(\mathbb{R})$ est une matrice de trace nulle.

- 3. Toute matrice de trace nulle est semblable à une matrice dont tous les coefficients diagonaux sont nuls.
- 4. Soient $D_n=\mathrm{Diag}(1,2,3,\ldots,n)$ et Φ, l'endomorphisme de $\mathfrak{M}_n(\mathbb{C})$ défini par

$$\forall M \in \mathfrak{M}_n(\mathbb{C}), \quad \Phi(M) = MD_n - D_nM.$$

Le noyau de Φ est le sous-espace des matrices diagonales et son image est le sous-espace des matrices dont tous les coefficients diagonaux sont nuls.

5. Soit $u \in L(E)$. La trace de u est nulle si, et seulement si, il existe deux endomorphismes v et w de E tels que

$$u = v \circ w - w \circ v.$$

47. On suppose que E admet une décomposition en somme directe

$$E = \bigoplus_{k=1}^{r} E_k$$

où les sous-espaces E_k sont tous stables par u. Pour $1 \le k \le r$, on note u_k , l'endomorphisme de E_k induit par restriction de u.

- 1. Les sous-espaces $\operatorname{Im} u_k$ sont-ils en somme directe? Leur somme est-elle égale à E?
- 2. Le noyau de u admet une décomposition en somme directe :

$$\operatorname{Ker} u = \bigoplus_{k=1}^{r} \operatorname{Ker} u_{k}.$$

Condition pour que l'application u soit injective?

II

Éléments propres

48. Une droite est stable par $u \in L(E)$ si, et seulement si, elle est dirigée par un vecteur x_0 tel que

$$\exists \lambda \in \mathbb{K}, \quad u(x_0) = \lambda \cdot x_0.$$

Vecteurs propres

49.1 \bowtie Un vecteur $x \in E$ est un vecteur propre de l'endomorphisme $u \in L(E)$ lorsqu'il est distinct du vecteur nul 0_E et qu'il existe un scalaire $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda \cdot x$.

49.2 → La famille $(x_0, u(x_0))$ est liée si, et seulement si, le vecteur x_0 est nul ou propre pour u.

49.3 Si $\mathscr{D} = \mathbb{K} \cdot x_0$ où $u(x_0) = \lambda \cdot x_0$, alors

$$\forall x \in \mathcal{D}, \quad u(x) = \lambda \cdot x.$$

Valeurs propres

50. Soit $u \in L(E)$.

50.1 \not Un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de u lorsque l'endomorphisme $(u - \lambda I_E)$ n'est pas injectif.

50.2 Le scalaire $\lambda \in \mathbb{K}$ est une valeur propre de u si, et seulement si, il existe un vecteur $x \neq 0$ tel que $u(x) = \lambda \cdot x$.

50.3 Si $u(x_0) = \lambda \cdot x_0 = \mu \cdot x_0$ et $x_0 \neq 0_E$, alors $\lambda = \mu$.

50.4 $tilde{\triangle}$ La valeur propre associée à un vecteur propre x de u est l'unique scalaire $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$.

 $50.5 \rightarrow L'$ endomorphisme u est injectif si, et seulement si, 0 n'est pas valeur propre de u.

50.6 $\not =$ Le spectre de l'endomorphisme u est l'ensemble, noté Sp(u), de ses valeurs propres.

50.7 Si *E* est un espace de dimension finie, alors λ est une valeur propre de *u* si, et seulement si, $\det(u - \lambda I_E) = 0$.

51. Valeurs propres et polynômes annulateurs Soit $u \in L(E)$.

51.1 \rightarrow *Si* $u(x) = \lambda \cdot x$, alors

$$\forall P \in \mathbb{K}[X], P(u)(x) = P(\lambda) \cdot (x).$$

 $51.2 \rightarrow Si\ P$ est un polynôme annulateur de u, alors toute valeur propre de u est une racine de P.

52. Exemples de spectres

52.1 Le spectre de l'homothétie de rapport k est réduit à $\{k\}$.

52.2 Le spectre d'une projection est en général égal à $\{0,1\}$.

52.3 Le spectre d'une symétrie est en général égal à $\{-1,1\}$.

52.4 Le spectre d'un endomorphisme nilpotent est réduit au singleton $\{0\}$.

52.5 Le spectre d'une rotation de \mathbb{R}^2 est en général vide et celui d'une rotation de \mathbb{R}^3 est en général réduit à $\{1\}$.

Sous-espaces propres

53.1 subseteq Soient $u \in L(E)$ et $\lambda \in Sp(u)$. Le sous-espace propre de E associé à la valeur propre $\lambda \in Sp(u)$ est $Ker(u - \lambda I_E)$.

53.2 La dimension d'un sous-espace propre est toujours supérieure à 1.

53.3 \rightarrow Si u et v commutent, tout sous-espace propre de u est stable par v.

53.4 ▷ Les sous-espaces propres de u sont stables par u.

54. Indépendance des sous-espaces propres

54.1 Soient x_1, \ldots, x_r , des vecteurs appartenant aux sousespaces propres de u respectivement associés aux valeurs propres $\lambda_1, \ldots, \lambda_r$. Alors

$$\forall Q \in \mathbb{K}[X], \qquad Q(u)\left(\sum_{k=1}^{r} x_k\right) = \sum_{k=1}^{r} Q(\lambda_k) \cdot x_k.$$

54.2 → Les sous-espaces propres d'un endomorphisme sont en somme directe

54.3 → Si E est un espace de dimension finie, le nombre de valeurs propres d'un endomorphisme de E est inférieur à dim E.

54.4 → Une famille de vecteurs propres associés à des valeurs propres deux à deux distinctes est une famille libre.

54.5 *Suite de* [34] – Pour tout $\lambda \in \mathbb{R}_+$, la fonction φ_{λ} est un vecteur propre, associé à la valeur propre λ , de l'endomorphisme u de $\mathscr{C}^{\infty}(I,\mathbb{R})$ défini par

$$\forall x \in I, \quad u(f)(x) = xf'(x)$$

donc la famille $(\varphi_{\lambda})_{\lambda \in \mathbb{R}_+}$ est libre.

Traduction matricielle

55. Éléments propres d'une matrice

$$\operatorname{rg}(A - \lambda I_n) < n$$
.

Le **spectre** de A est l'ensemble de ses valeurs propres.

55.2 Le scalaire $\lambda \in \mathbb{K}$ est une valeur propre de la matrice $A \in \mathfrak{M}_n(\mathbb{K})$ si, et seulement si, la matrice $(A - \lambda I_n)$ n'est pas inversible.

55.3 Si $A = \mathfrak{Mat}_{\mathscr{B}}(u)$, alors Sp(A) = Sp(u).

55.4 → Si $A \in \mathfrak{M}_n(\mathbb{K})$, alors le cardinal du spectre de A est inférieur à n.

55.5

$$\forall A \in \mathfrak{M}_n(\mathbb{K}), \quad \operatorname{Sp}(A) = [\det(A - \lambda I_n) = 0].$$

55.6 mathrew Les vecteurs propres de $A \in \mathfrak{M}_n(\mathbb{K})$ associés à la valeur propre $\lambda \in \mathbb{K}$ sont les matrices colonnes $X \in \mathfrak{M}_{n,1}(\mathbb{K})$ non nulles telles que $AX = \lambda X$.

55.7 $\not \succeq$ Le sous-espace propre de A associé à la valeur propre λ est $\operatorname{Ker}(A - \lambda I_n)$.

55.8 → Les valeurs propres d'une matrice triangulaire sont ses coefficients diagonaux.

55.9 → Deux matrices semblables ont même même spectre et les sousespaces propres associés à une même valeur propre sont isomorphes.

55.10→ Une matrice et sa transposée ont même spectre. De plus, les sous-espaces propres de A et de ^t A qui sont associés à une même valeur propre sont isomorphes.

56. Spectre complexe d'une matrice réelle

Soit $A \in \mathfrak{M}_n(\mathbb{R})$. Le spectre de A est, par définition, une partie de \mathbb{R} . Mais une telle matrice peut toujours être considérée comme un élément de $\mathfrak{M}_n(\mathbb{C})$.

$$\det(A - \lambda I_n) = 0.$$

56.2 Le spectre complexe de A est l'ensemble des $\lambda \in \mathbb{C}$ pour lesquels il existe $X \in \mathfrak{M}_{n,1}(\mathbb{C})$ non nulle tel que $AX = \lambda X$.

56.3 Soient λ , un réel qui appartient au spectre complexe de A et $X \in \mathfrak{M}_{n,1}(\mathbb{C})$, un vecteur propre de A associé à λ .

Que penser des vecteurs $X + \overline{X}$ et $X - \overline{X}$?

$$\forall A \in \mathfrak{M}_n(\mathbb{R}), \quad \operatorname{Sp}(A) = \operatorname{Sp}_{\mathbb{C}}(A) \cap \mathbb{R}.$$

Entraînement

57. Questions pour réfléchir

- 1. Si $\operatorname{rg} u = 1$, alors l'image de u est dirigée par un vecteur propre de u.
 - 2. Les vecteurs propres de u appartiennent-ils à $\operatorname{Im} u$?
- 3. Pourquoi un vecteur propre doit-il être par définition distinct du vecteur nul?
- 4. Un endomorphisme u admet 0 pour valeur propre si, et seulement si, il existe $n \in \mathbb{N}^*$ tel que u^n admette 0 pour valeur propre.
- 5. Le spectre de la dérivation en tant qu'endomorphisme de $\mathbb{K}[X]$ est réduit à $\{0\}$. En tant qu'endomorphisme de $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$, la dérivation admet \mathbb{R} pour spectre.
- 6. Le spectre de l'endomorphisme $[P \mapsto XP]$ de $\mathbb{K}[X]$ est vide.
- 7. Tout vecteur d'un sous-espace propre est-il un vecteur propre?
- 8. Le noyau d'un endomorphisme est-il un sous-espace propre?
- 9. Soit $P \in \mathbb{K}[X]$. Comparer le sous-espace propre de u associé à λ et le sous-espace propre de P(u) associé à $P(\lambda)$.
- 10. On suppose que $u \circ v = v \circ u$. Si x est un vecteur propre pour u, le vecteur v(x) est-il un vecteur propre pour u? Dans ce cas, à quelle valeur propre est-il associé?
- 11. On note E_k , $1 \le k \le r$, les sous-espaces propres d'un endomorphisme. Pour tout $1 \le k \le r$, on considère une famille libre $(x_i^k)_{1 \le i \le n_k}$ constituée de vecteurs de E_k . Alors la famille

$$(x_i^k)_{1\leqslant i\leqslant n_k,\, 1\leqslant k\leqslant r}$$

est libre.

- 12. Quelle que soit la base $\mathscr B$ de E, la matrice $A=\mathfrak{Mat}_{\mathscr B}(u)$ et l'endomorphisme $u\in \mathrm{L}(E)$ ont même spectre. Comparer les vecteurs propres de A et les vecteurs propres de u.
 - 13. Suite de [55.9] Expliciter un isomorphisme.
- 14. Deux matrices équivalentes ont-elles les mêmes valeurs propres?
- 15. Condition pour que deux matrices diagonales soient semblables?
- 16. Comparer les spectres réel et complexe d'une matrice de rotation $A \in SO_2(\mathbb{R})$; d'une matrice de rotation $A \in SO_3(\mathbb{R})$.
- 58. Les matrices suivantes ont-elles 0 pour valeur propre?

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 3 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

59. Les matrices suivantes ont-elles 1 pour valeur propre?

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

60. Les matrices suivantes ont des valeurs propres évidentes : lesquelles ?

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \quad \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 & 1 \\ 0 & 2 & 0 \\ 1 & 3 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

61. Les matrices suivantes ont des vecteurs propres en commun. Lesquels?

1.

$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 0 \\ 3 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 & 0 \\ 0 & 3 & 0 \\ -1 & 2 & 0 \end{pmatrix}$$

2.

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & -1 \\ 0 & 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & -1 \\ -3 & 1 & 2 \end{pmatrix}$$

62. On considère un endomorphisme $u \in L(E)$ dont les sous-espaces propres sont des droites vectorielles. Si $v \in L(E)$ commute à u, alors tout vecteur propre de u est un vecteur propre de v.

63. Espaces propres et image d'un endomorphisme

- 1. Un sous-espace propre de u associé à une valeur propre non nulle est contenu dans ${\rm Im}\,u$.
- 2. Si p est un projecteur (non identiquement nul), alors $\operatorname{Im} p$ est un sous-espace propre de p.
- 3. Si l'image de $u \in L(E)$ est le sous-espace propre associé à la valeur propre 1, l'endomorphisme u est-il un projecteur?
- 4. Quels sont les endomorphismes u tels que $\operatorname{Im} u$ soit un sous-espace propre?

64. Endomorphismes conjugués

Soient u et v, deux endomorphismes de E et F (respectivement), tels que

$$v = \varphi \circ u \circ \varphi^{-1}$$

où φ est un isomorphisme de E sur F. Comparer les valeurs propres et les sous-espaces propres de u et de v, ainsi que les sous-espaces stables par u et par v respectivement.

65. Caractérisation des homothéties

Soit u, un endomorphisme de E.

- Si x et y sont deux vecteurs propres de u associés à des valeurs propres distinctes, alors x + y n'est pas un vecteur propre
- Si tout vecteur non nul de *E* est un vecteur propre de *u*, 2. alors u est une homothétie.
- Valeurs propres et vecteurs propres de l'application qui, à $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$, associe la primitive de f qui s'annule en 0.
- Soit E , l'espace des fonctions continues de \mathbb{R}_+ dans \mathbb{R} qui s'annulent en $\hat{0}$. Pour $f \in E$, on pose

$$\varphi(f)(0) = 0$$
 et $\forall x > 0$, $\varphi(f)(x) = \frac{1}{x} \int_0^x f(t) dt$.

Valeurs propres et vecteurs propres de φ .

Spectre de la dérivation discrète [4.4]

- Valeurs propres et vecteurs propres de Δ . 1.
- Le sous-espace $F = \ell^{\infty}(\mathbb{C})$ est stable par Δ . Valeurs propres et vecteurs propres de l'endomorphisme induit par restriction de Δ à F.
- À une matrice $A \in \mathfrak{M}_n(\mathbb{R})$, on associe l'application udéfinie par

$$\forall M \in \mathfrak{M}_n(\mathbb{R}), \quad u(M) = AM.$$

L'endomorphisme u et la matrice A ont mêmes valeurs propres. Décrire les sous-espaces propres de u en fonction des sousespaces propres de \overline{A} .

70. Soient $A \in \mathfrak{M}_n(\mathbb{K})$ et

$$B = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} \in \mathfrak{M}_{2n}(\mathbb{K}).$$

Soit (X_1, \ldots, X_n) , une famille libre de vecteurs propres de A. On suppose que $X_1, ..., X_r$ sont associés à des valeurs propres non nulles et que $X_{r+1}, ..., X_n$ appartiennent au noyau de A. Alors les 2n matrices colonnes

$$\begin{pmatrix} X_1 \\ X_1 \end{pmatrix}, \begin{pmatrix} X_1 \\ -X_1 \end{pmatrix}, \dots, \begin{pmatrix} X_r \\ X_r \end{pmatrix}, \begin{pmatrix} X_r \\ -X_r \end{pmatrix}, \dots$$
$$\begin{pmatrix} X_{r+1} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ X_{r+1} \end{pmatrix}, \dots, \begin{pmatrix} X_n \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ X_n \end{pmatrix}$$

forment une famille libre de vecteurs propres de B.

71. Hyperplans stables

Soient E, un espace de dimension finie; \mathcal{B} , une base de E; f, un endomorphisme de *E* et *H*, un hyperplan de *E*.

1. Il existe une forme linéaire non nulle *u* dont le noyau est égal à H :

$$H = [u(x) = 0]$$

et l'hyperplan H est stable par f si, et seulement si, la forme linéaire $u \circ f$ est proportionnelle à u.

- 2. L'hyperplan \overline{H} est stable par f si, et seulement si, il existe un scalaire λ tel que $\operatorname{Im}(f + \lambda \operatorname{I}) \subset H$. 3. Soient $A = \mathfrak{Mat}_{\mathscr{B}}(f)$ et $L = \mathfrak{Mat}_{\mathscr{B}}(u)$.

 - 3.a Quelles sont les tailles respectives de A et de L?
- 3.b L'hyperplan H est stable par f si, et seulement si, tL est un vecteur propre de ${}^{t}A$.
- En déduire les sous-espaces stables par chacune des matrices suivantes.

$$\begin{pmatrix} 3 & -2 & -4 \\ -1 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 3 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & -1 & -2 \end{pmatrix}$$

Ш

Polynôme caractéristique

Rappel sur les permutations

72.1 \triangle Le support d'une permutation $\sigma \in \mathfrak{S}_n$ est l'ensemble des en*tiers* $1 \le k \le n$ *tels que* $\sigma(k) \ne k$.

Ou bien le support d'une permutation est vide, ou bien il compte au moins deux éléments.

Rappels sur les polynômes

73.1 → $Si P_1, P_2, ..., P_r$ sont des polynômes tels que

$$\forall 2 \leq k \leq r$$
, $\deg P_k < \deg P_1$,

alors le degré de la somme $(P_1 + P_2 + \cdots + P_r)$ est égal à deg P_1 .

73.2 \rightarrow Si le polynôme $P = a_0 + a_1X + \cdots + a_dX^d$ est scindé, alors la somme des racines de P est égale à $-a_{d-1}/a_d$ et le produit des racines de P est égal à $(-1)^d a_0/a_d$

Cas d'une matrice

74.1 \triangle Le polynôme caractéristique de $A \in \mathfrak{M}_n(\mathbb{K})$ est le polynôme de $\mathbb{K}[X]$ associé à la fonction polynomiale

$$[\lambda \mapsto \det(\lambda I_n - A)]$$

de K dans K.

Il est plus simple de calculer $\det(A - \lambda I_n)$, qui donne le polynôme caractéristique au signe près.

74.3 \rightarrow Le polynôme caractéristique de $A \in \mathfrak{M}_n(\mathbb{K})$ est un polynôme unitaire de degré n, de la forme :

$$X^{n} - \operatorname{tr}(A)X^{n-1} + \dots + (-1)^{n} \operatorname{det}(A)$$

et ses racines sont les valeurs propres de A.

Si la matrice $A = (a_{i,j})_{1 \le i,j \le n}$ est triangulaire (en particulier si elle est diagonale), alors son polynôme caractéristique est scindé:

$$\chi_A = \prod_{k=1}^n (X - a_{i,i}).$$

74.5 → *Deux matrices semblables ont même polynôme caractéristique.*

74.6 Une matrice et sa transposée ont même polynôme caractéristique.

75. Cas d'un endomorphisme

On se restreint ici aux endomorphismes d'un espace vectoriel de dimension finie.

75.1 \triangle Si $A = \mathfrak{Mat}_{\mathscr{B}}(u)$, alors le polynôme caractéristique de $u \in L(E)$ est le polynôme caractéristique de la matrice A.

75.2 \rightarrow Le degré du polynôme caractéristique de $u \in L(E)$ est égal à dim E et ses racines sont les valeurs propres de u.

Si E est un espace vectoriel complexe de dimension finie, alors le spectre d'un endomorphisme de *E* n'est jamais vide.

75.4 \rightarrow Si u_F est l'endomorphisme induit par restriction de u à un sous-espace stable F, alors le polynôme caractéristique de u_F divise le polynôme caractéristique de u.

Multiplicité d'une valeur propre

76. La multiplicité de la valeur propre λ de A est sa multiplicité en tant que racine du polynôme caractéristique χ_A .

Interprétation géométrique 77.

Soit $A \in \mathfrak{M}_n(\mathbb{K})$.

Si la dimension du sous-espace propre $Ker(A - \lambda I_n)$ est égale à d, alors la matrice A est semblable à une matrice triangulaire par blocs de la forme

$$\begin{pmatrix} \lambda I_d & * \\ 0 & * \end{pmatrix}$$

et le polynôme caractéristique de A est divisible par $(X - \lambda)^d$. 77.2 \rightarrow Si λ est une valeur propre de A de multiplicité m_{λ} , alors

$$1 \leq \dim \operatorname{Ker}(A - \lambda I_n) \leq m_{\lambda}$$
.

Entraînement

78. Questions pour réfléchir

Pour tout $2 \le k \le n$, il existe $\sigma \in \mathfrak{S}_n$ dont le support compte k éléments.

Soient σ et τ dans \mathfrak{S}_n .

Comparer les supports de σ et de $\tau^{-1} \circ \sigma \circ \tau$. 2.a

Le support de $\sigma \circ \tau$ est contenu dans l'union des supports de σ et de τ . Étudier le cas d'égalité.

Pourquoi est-il important de calculer le polynôme caractéristique sous forme factorisée?

Que dire du polynôme caractéristique d'une matrice diagonale par blocs? triangulaire par blocs?

La définition [75.1] a bien un sens. 5.

79. Suite de [12] – Si dim E = n et rg u = 1, alors le polynôme caractéristique de u est $X^{n-1}(X - \operatorname{tr} u)$.

80.

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ont même polynôme caractéristique, mais ne sont pas semblables.

81. Soit $a \in \mathbb{C}$. Le polynôme caractéristique de

$$\begin{pmatrix} 1 & -1 & a \\ -1 & 1 & -a \\ a & -a & 2a - 1 \end{pmatrix}$$

est $X[X^2 - (2a+1)X - 2(a-1)^2]$.

Les polynômes caractéristiques des matrices

$$\begin{pmatrix}
0 & --- & 0 & 1 \\
 & & & | & | \\
0 & --- & 0 & 1 \\
1 & --- & 1 & 0
\end{pmatrix}$$
 et
$$\begin{pmatrix}
0 & --- & 0 & -1 \\
 & & & | & | \\
0 & --- & 0 & -1 \\
1 & --- & 1 & 0
\end{pmatrix}$$

sont égaux à $X^{n-2}[X^2 - (n-1)]$ et à $X^{n-2}[X^2 + n - 1]$ respectivement.

Si le polynôme caractéristique de $A \in GL_n(\mathbb{K})$ est égal à 83.

$$X^{n} + a_{n-1}X^{n-1} + \cdots + a_{1}X + a_{0}$$

alors le polynôme caractéristique de A^{-1} est associé à

$$a_0 X^n + a_1 X^{n-1} + \cdots + a_{n-1} X + 1.$$

84. Suite de [70] – Comme les matrices $\lambda I_{2n} - B$ et

$$\begin{pmatrix} \lambda I_n - A & -A \\ 0 & \lambda I + A \end{pmatrix}$$

sont équivalentes, alors $\chi_B(\lambda) = \chi_A(\lambda)\chi_A(-\lambda)$.

Le polynôme caractéristique de la matrice 85.

est égal à

$$(X - n) \prod_{\substack{0 \le k < n \\ k \ne n - 1}} (X - k) + \sum_{k=0}^{n-2} \prod_{\substack{0 \le j < n \\ i \ne k}} (X - j)$$

donc le scalaire λ est une valeur propre de A si, et seulement si,

$$\sum_{j=0}^{n-1} \frac{1}{\lambda - j} = 1.$$

Polynômes de Tchebychev 86.

Pour tout $n \ge 2$, on note $P_n = \det(A_n - XI_n)$ où

et on pose $P_1 = -X$. 1. $P_2 = X^2 - 1$

1.
$$P_2 = X^2 - 1$$

$$\forall n \ge 1, P_{n+2} = -XP_{n+1} - P_n.$$

Soit -2 < x < 2. 3.

3.a Il existe un unique $0 < \alpha < \pi$ tel que $x = -2\cos\alpha$. 3.b

$$\forall n \geqslant 1, \quad P_n(x) = \frac{\sin(n+1)\alpha}{\sin \alpha}.$$

4. Le polynôme P_n admet n racines réelles distinctes et la matrice A_n est diagonalisable [89.4].

Si X_1 et X_2 sont deux vecteurs propres de A_n associés à deux valeurs propres distinctes λ_1 et λ_2 , alors ${}^tX_1X_2 = 0$. Interpréter géométriquement ce résultat.

Endomorphismes diagonalisables

87. On considère un espace vectoriel E dont la dimension est finie.

87.1 → Lemme fondamental

La matrice d'un endomorphisme u relative à une base B de E est diagonale si, et seulement si, cette base B est constituée de vecteurs propres

87.2 🖾 Un endomorphisme u de E est diagonalisable lorsqu'il existe une base de E constituée de vecteurs propres de u.

Traduction matricielle

88.1 🖾 Une matrice carrée est diagonalisable lorsque elle est semblable à une matrice diagonale.

L'endomorphisme u est diagonalisable si, et seulement si, sa matrice $\mathfrak{Mat}_{\mathscr{B}}(u)$ est diagonalisable quelle que soit la base choisie \mathscr{B} .

88.3 \rightarrow La matrice $A \in \mathfrak{M}_n(\mathbb{K})$ est diagonalisable si, et seulement si, l'endomorphisme canoniquement associé à A est diagonalisable.

Caractérisations géométriques

On peut caractériser les endomorphismes diagonalisables en étudiant leurs sous-espaces propres. L'intérêt de ce point de vue est de rendre superflu le *choix* d'une base.

89.1 → Un endomorphisme u de E est diagonalisable si, et seulement si, l'espace E est la somme directe des sous-espaces propres de u.

$$E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{Ker}(u - \lambda \operatorname{I}_{E})$$

En pratique, si l'endomorphisme u est diagonalisable, alors pour tout vecteur $x \in E$, il existe une, et une seule, famille de vecteurs $(x_{\lambda})_{\lambda \in Sp(u)}$ tels que

$$x = \sum_{\lambda \in \operatorname{Sp}(u)} x_{\lambda}$$
 et $\forall \lambda \in \operatorname{Sp}(u), u(x_{\lambda}) = \lambda \cdot x_{\lambda}.$

89.3 → Un endomorphisme u de E est diagonalisable si, et seulement si.

$$\dim E = \sum_{\lambda \in \operatorname{Sp}(u)} \dim \operatorname{Ker}(u - \lambda \operatorname{I}_{E}).$$

89.4 \rightarrow *Si* dim E = n et si $u \in L(E)$ possède n valeurs propres deux à deux distinctes, alors u est diagonalisable et ses sous-espaces propres sont des droites vectorielles.

89.5 Si u est diagonalisable et n'a qu'une seule valeur propre, alors u est une homothétie.

90. \rightarrow *Un endomorphisme u* \in L(*E*) *est diagonalisable si, et seulement si, son polynôme caractéristique est scindé* :

$$\chi_u = \prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)^{m_{\lambda}}$$

et si, pour toute valeur propre, la dimension du sous-espace propre associé est égale à la multiplicité :

$$\forall \lambda \in \operatorname{Sp}(u), \operatorname{dim} \operatorname{Ker}(u - \lambda \operatorname{I}_E) = m_{\lambda}.$$

Entraînement

91. Questions pour réfléchir

- 1. Une matrice est diagonalisable si, et seulement si, sa transposée est diagonalisable.
- 2. Si A est diagonalisable, alors Q(A) est diagonalisable, quel que soit $Q \in \mathbb{K}[X]$.
- 3. Une matrice triangulaire dont tous les coefficients diagonaux sont égaux est diagonalisable si, et seulement si, c'est une matrice d'homothétie.
- 4. Quelles sont, parmi les matrices de la base canonique de $\mathfrak{M}_n(\mathbb{K})$, les matrices diagonalisables? \to [100]
- 5. Soient u, un endomorphisme diagonalisable et $P \in \mathbb{K}[X]$. Comparer les sous-espaces propres de u et de P(u).
- 6. Si le polynôme caractéristique de u est scindé à racines simples, alors u est diagonalisable et les sous-espaces propres de u sont des droites.
- 7. Si u est diagonalisable, le polynôme caractéristique de u est-il scindé? à racines simples?
- 8. S'il existe une base $\mathscr B$ de E telle que $\mathfrak{Mat}_{\mathscr B}(u)$ soit diagonalisable, alors u est diagonalisable.
- 9. Soit *E*, un espace de dimension finie. L'endomorphisme *u* est diagonalisable si, et seulement si,

$$\dim E \leqslant \sum_{\lambda \in \operatorname{Sp}(u)} \dim \operatorname{Ker}(u - \lambda \operatorname{I}_{E}).$$

92. On suppose que l'endomorphisme u est diagonalisable et que $\mathrm{Sp}(u)=(\lambda_k)_{1\leqslant k\leqslant r}.$ Alors le polynôme

$$P_0 = \prod_{k=1}^r (X - \lambda_k)$$

est un polynôme annulateur de u.

93. Diagonaliser les matrices suivantes.

$$\begin{pmatrix} 2 & -1 & -1 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 & 2 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

94. On pose

$$A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

La matrice $A_0 = P^{-1}AP$ est triangulaire supérieure. La matrice A est-elle diagonalisable?

95. On note J, la matrice de $\mathfrak{M}_n(\mathbb{K})$ dont tous les coefficients sont égaux à 1.

- 1. La matrice J est diagonalisable. Préciser son spectre et ses sous-espaces propres.
- 2. La matrice *J* est proportionnelle à une matrice de projection. Que peut-on en déduire?
 - 3. Spectre et sous-espaces propres des matrices

$$M(a,b) = (b-a)I + aJ$$

dont les coefficients diagonaux sont tous égaux à $b\in\mathbb{C}$ et dont les autres coefficients sont tous égaux à $a\in\mathbb{C}$.

96. Endomorphismes de $\mathbb{R}_n[X]$

96.1 L'application f qui, à un polynôme $P \in \mathbb{R}_3[X]$, associe le reste de la division euclidienne de X^2P par X^4-1 est un endomorphisme de $\mathbb{R}_3[X]$. Est-il inversible ? diagonalisable ?

96.2 L'application φ définie par

$$\forall P \in \mathbb{R}_n[X], \quad \varphi(P) = P - (X+1)P'$$

est un endomorphisme diagonalisable de $\mathbb{R}_n[X]$.

96.3 Matrice, relative à la base canonique de $\mathbb{R}_n[X]$, de l'application φ définie par

$$\forall P \in \mathbb{R}_n[X], \quad \varphi(P) = (X^2 - 1)P'' + 2XP'.$$

L'endomorphisme φ est-il diagonalisable?

96.4 Soient a et b', deux réels distincts. L'application φ définie par

$$\forall P \in \mathbb{R}_n[X], \quad \varphi(P) = (X - a)(X - b)P' - nXP$$

est diagonalisable.

97. Soit $A \in \mathfrak{M}_n(\mathbb{K})$, une matrice admettant n valeurs propres distinctes.

97.1 Si *A* est diagonale, alors les matrices qui commutent à *A* sont les matrices diagonales (par un calcul matriciel direct).

97.2 Si une matrice commute à A, alors elle est diagonalisable (par un calcul matriciel ou en appliquant [53.3]). Étudier la réciproque. \rightarrow [193]

98. Racines carrées d'un endomorphisme

Soit $u \in L(E)$, diagonalisable. Si E est un espace vectoriel complexe, il existe $v \in \mathbb{K}[u]$ tel que $u = v^2$. Étudier le cas où E est un espace vectoriel réel.

99. La matrice

$$A = \begin{pmatrix} 1 & -3 & 0 \\ -1 & 5 & -2 \\ 0 & 3 & 1 \end{pmatrix}$$

est-elle inversible?

Si une matrice $R \in \mathfrak{M}_3(\mathbb{R})$ vérifie $R^2 = A$, alors elle commute à A et il existe une matrice $P \in GL_3(\mathbb{R})$ telle que $P^{-1}AP$ et $P^{-1}RP$ soient diagonales.

Résoudre l'équation $R^2 = A$.

100. Matrices de rang 1 [43.2]

Soit $A \in \mathfrak{M}_n(\mathbb{K})$, une matrice dont le rang est égal à 1.

- 1. Caractérisation des sous-espaces propres de A en fonction de U et V.
- 2. La matrice A est diagonalisable si, et seulement si, sa trace est différente de 0.

101. Soit $(x, y, z) \in \mathbb{C}^3$. La matrice

$$A = \begin{pmatrix} x^2 & yx & zx \\ xy & y^2 & zy \\ xz & yz & z^2 \end{pmatrix}$$

est diagonalisable si, et seulement si, $x^2 + y^2 + z^2 \neq 0$ ou (x,y,z) = (0,0,0). Commenter le cas où $(x,y,z) \in \mathbb{R}^3$.

102. L'endomorphisme f de $\mathfrak{M}_2(\mathbb{R})$ défini par

$$\forall M \in \mathfrak{M}_2(\mathbb{R}), \quad f(M) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} M$$

est-il diagonalisable? inversible?

103. Le polynôme caractéristique et le polynôme minimal de la matrice

$$A == \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & & & 0 \\ 0 & & & 1 \\ 1 & 0 & & & 0 \end{pmatrix} \in \mathfrak{M}_n(\mathbb{C})$$

sont égaux à $X^n - 1$. La matrice A est diagonalisable et

$$\operatorname{Ker}(A - \lambda I_n) = \mathbb{C} \cdot (1, \lambda, \dots, \lambda^{n-1})$$

pour toute valeur propre $\lambda \in \operatorname{Sp}(A)$.

V

Endomorphismes trigonalisables

105. Soit $A \in \mathfrak{M}_n(\mathbb{K})$, une matrice semblable à une matrice triangulaire T.

105.1 Les coefficients diagonaux de T sont les valeurs propres de A.

105.2 Le polynôme caractéristique de *A* est scindé.

105.3 La matrice P(A) est trigonalisable, quel que soit le polynôme $P \in \mathbb{K}[X]$.

106. On considère un espace vectoriel E de dimension finie. **106.1** olimits ol

106.2 Dans une base convenable, la matrice d'un endomorphisme nilpotent est triangulaire. \rightarrow [113]

106.3 Si l'endomorphisme u est trigonalisable, alors la matrice $\mathfrak{Mat}_{\mathscr{B}}(u)$ est trigonalisable, quelle que soit la base \mathscr{B} .

106.4 Une matrice carrée est trigonalisable si, et seulement si, l'endomorphisme canoniquement associé à cette matrice est trigonalisable.

V.1 Caractérisations

107. → Caractérisation géométrique

Soit $n = \dim E$. Un endomorphisme u de E est trigonalisable si, et seulement si, il existe une famille $(F_k)_{1 \le k \le n}$ de sous-espaces vectoriels stables par u tels que

$$\{0_E\} \subsetneq F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_n = E.$$

En particulier, dim $F_k = k$ pour tout $1 \le k \le n$.

108. Caractérisation polynomiale

Soit χ_n , le polynôme caractéristique de la matrice $A \in \mathfrak{M}_n(\mathbb{K})$. **108.1** Si $\lambda \in \mathbb{K}$ est une valeur propre de $A \in \mathfrak{M}_n(\mathbb{K})$, alors il existe une matrice $A_{n-1} \in \mathfrak{M}_{n-1}(\mathbb{K})$ telle que A soit semblable à une matrice de la forme

$$\begin{pmatrix} \lambda & \star \\ 0 & A_{n-1} \end{pmatrix}.$$

Le polynôme caractéristique χ_{n-1} de A_{n-1} est défini par

$$\chi_n = (X - \lambda)\chi_{n-1}.$$

108.2 *— Un endomorphisme est trigonalisable si, et seulement si, son polynôme caractéristique est scindé.*

108.3→ Si E est un espace vectoriel complexe de dimension finie, tout endomorphisme de E est trigonalisable.

109. → Expressions de la trace et du déterminant

On suppose que le polynôme caractéristique de $A \in \mathfrak{M}_n(\mathbb{K})$ est scindé :

$$\chi_A = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)^{m_{\lambda}}.$$

109.1 La trace de A est la somme de ses valeurs propres (comptées avec multiplicité):

$$\operatorname{tr}(A) = \sum_{\lambda \in \operatorname{Sp}(A)} m_{\lambda} \lambda.$$

109.2 Le déterminant de A est le produit de ses valeurs propres (comptées avec multiplicité):

$$\det(A) = \prod_{\lambda \in \operatorname{Sp}(A)} \lambda^{m_{\lambda}}.$$

V.2 Endomorphismes nilpotents

110.1 *^{top}* Un endomorphisme $u \in L(E)$ est dit **nilpotent** lorsqu'il existe un entier $d \ge 1$ tel que u^d soit l'endomorphisme nul.

110.2 S'il existe une base \mathcal{B} de E telle que la matrice $\mathfrak{Mat}_{\mathcal{B}}(u)$ soit nilpotente, alors l'endomorphisme u est nilpotent.

110.3 Si un endomorphisme u est nilpotent, alors la matrice $\mathfrak{Mat}_{\mathscr{B}}(u)$ est nilpotente, quelle que soit la base \mathscr{B} choisie.

111. Soit $u \in L(E)$, un endomorphisme nilpotent.

111.1 L'indice de nilpotence de u [6.41.3] est le plus petit entier $d \ge 1$ tel que $u^d = \omega$.

111.2 L'indice de nilpotence de u est le seul entier d tel que $u^{d-1} \neq \omega = u^d$.

112. Soient E, un espace vectoriel de dimension $n \ge 1$ et u, un endomorphisme nilpotent non nul de E, d'indice d.

112.1 Il existe un vecteur $x \in E$ tel que la famille

$$\left(x,u(x),u^2(x),\ldots,u^{d-1}(x)\right)$$

soit une famille libre.

Plus précisément, tout vecteur $x \notin \text{Ker } u^{d-1}$ convient.

112.2→ Majoration de l'indice de nilpotence

L'indice de nilpotence de $u \in L(E)$ est inférieur à dim E. \rightarrow [123]

113. Réduction d'un endomorphisme nilpotent Soit $u \in L(E)$.

113.1 La suite des sous-espaces Ker u^i est croissante :

$$\forall i \in \mathbb{N}, \quad \operatorname{Ker} u^i \subset \operatorname{Ker} u^{i+1}.$$

113.2 Si Ker $u^{i+1} = \text{Ker } u^i$, alors

$$\forall i \in \mathbb{N}, \quad \operatorname{Ker} u^{i+j} = \operatorname{Ker} u^i.$$

113.3 Pour tout entier $i \in \mathbb{N}$,

$$u_*(\operatorname{Ker} u^{i+1}) \subset \operatorname{Ker} u^i$$
.

113.4 Si *u* est nilpotent, alors il existe un entier *d* tel que

$$\operatorname{Ker} u \subsetneq \operatorname{Ker} u^2 \subsetneq \cdots \subsetneq \operatorname{Ker} u^{d-1} \subsetneq \operatorname{Ker} u^d = E.$$

113.5 Si $u\in \mathrm{L}(E)$ est nilpotent, alors il existe une base $\mathscr B$ de E telle que $\mathfrak{Mat}_{\mathscr B}(u)$ soit une matrice triangulaire supérieure stricte.

113.6→ Un endomorphisme u est nilpotent si, et seulement si, il est trigonalisable avec 0 pour seule valeur propre.

113.7 Si $A \in \mathfrak{M}_n(\mathbb{K})$ est nilpotente, alors le polynôme caractéristique de A est égal à X^n . \rightarrow [113.5]

Entraînement

Questions pour réfléchir

- *Suite de* [108.3] Soit $A \in \mathfrak{M}_n(\mathbb{C})$, une matrice qui n'est pas diagonalisable. Discuter l'intérêt de réduire A sous forme
 - 1.a pour calculer les puissances de *A* [160];
 - pour résoudre un système différentiel associé à A [165]. 1.b
- Si une matrice A est semblable à une matrice nilpotente, alors elle est nilpotente.
- Deux matrices nilpotentes de $\mathfrak{M}_n(\mathbb{K})$ sont-elles semblables? équivalentes?
- 4. Si la matrice $A \in \mathfrak{M}_n(\mathbb{K})$ est nilpotente, alors la matrice $(I_n - A)$ est inversible et son inverse est un polynôme en A.
- Le spectre d'un endomorphisme nilpotent $u \in L(E)$ est réduit à $\{0\}$. Si le spectre d'un endomorphisme u est réduit à {0}, cet endomorphisme est-il nilpotent?
- 6. Suite de [113] Pour $u \in \hat{L}(E)$, étudier la suite des sous-
- espaces $(\operatorname{Im} u^i)_{i\in\mathbb{N}}$. 7. Suite de [113.7] Si le polynôme caractéristique de u est égal à X^n , alors u est nilpotent.
 - Un endomorphisme nilpotent est-il diagonalisable?
- 115.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 3 \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

sont semblables. La matrice A est-elle diagonalisable?

Soit f, l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice

$$A = \begin{pmatrix} -5 & 2 & 2 \\ -8 & 1 & 6 \\ -8 & 2 & 5 \end{pmatrix}.$$

116.1 Le polynôme caractéristique de A est $(X+1)^2(X-3)$. Cette matrice est inversible, mais pas diagonalisable.

116.2 On pose

$$e_1 = (1, 2, 2), \quad e_2 = \mu \cdot (1, 1, 1), \quad e_3 = (0, 1, 0) + \lambda \cdot e_2.$$

La famille $\mathscr{B} = (e_1, e_2, e_3)$ est une base si, et seulement si, $\mu \neq 0$. La matrice A est trigonalisable et

$$\mathfrak{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

pour un choix convenable de λ et μ .

 \rightarrow [167]

Suite de [71] - Les matrices

$$A = \begin{pmatrix} 6 & -6 & 5 \\ -4 & -1 & 10 \\ 7 & -6 & 4 \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

sont semblables. Sous-espaces stables par *A*?

Soient $A \in \mathfrak{M}_n(\mathbb{C})$ et P, son polynôme caractéristique. Pour tout $x \notin \operatorname{Sp}(A)$,

$$\operatorname{tr}[(xI_n - A)^{-1}] = \sum_{\lambda \in \operatorname{Sp}(A)} \frac{m_{\lambda}}{x - \lambda} = \frac{P'(x)}{P(x)}$$

où m_{λ} est la multiplicité de $\lambda \in \operatorname{Sp}(A)$.

Matrices nilpotentes

- Une matrice triangulaire est nilpotente si, et seulement si, chaque coefficient diagonal est nul.
- Une matrice $A \in \mathfrak{M}_3(\mathbb{R})$, non nulle, telle que $A^2 = 0$ est semblable à

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Une matrice $A \in \mathfrak{M}_n(\mathbb{K})$ telle que $A^n = 0$ et $A^{n-1} \neq 0$ est semblable à

Caractérisation des matrices nilpotentes Soit $A \in \mathfrak{M}_n(\mathbb{R})$, telle que

$$\forall \ 1 \leqslant k \leqslant n, \quad \operatorname{tr}(A^k) = 0.$$

- Si P est le polynôme caractéristique de A, alors [127.3] la trace de P(A) est nulle et la matrice A n'est pas inversible.
 - La matrice A est semblable à une matrice de la forme

$$\begin{pmatrix} B & 0 \\ \star & 0 \end{pmatrix}$$
,

où $B \in \mathfrak{M}_{n-1}(\mathbb{R})$. Si $B^{n-1} = 0$, alors $A^n = 0$.

On considère l'endomorphisme u de $E = \mathbb{R}^4$ représenté 121. dans la base canonique par la matrice

$$A_0 = \frac{1}{2} \begin{pmatrix} 0 & -3 & 5 & -2 \\ -3 & 0 & 6 & -5 \\ -5 & 6 & 0 & -3 \\ -2 & 5 & -3 & 0 \end{pmatrix}.$$

121.1 Avec

$$P_1 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}, \quad B_1 = \begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix}, \quad B_2 = \begin{pmatrix} -3 & 1 \\ -4 & 1 \end{pmatrix},$$

$$P_1^{-1}A_0P_1 = \begin{pmatrix} B_1 & 0\\ 0 & B_2 \end{pmatrix}.$$

Il existe deux plans F_1 et F_2 supplémentaires dans E et stables

121.2 On considère

$$N = \begin{pmatrix} -2 & 1 \\ -4 & 2 \end{pmatrix}$$
 et $Q = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$.

Comme

$$Q^{-1}NQ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

il existe une matrice inversible P_2 telle que la matrice $P_2^{-1}A_0P_2$ soit triangulaire supérieure.

121.3 Le polynôme minimal et le polynôme caractéristique de A_0 sont égaux.

121.4 Selon le vecteur $x \in E$ choisi, le rang de la famille

$$(x, u(x), u^2(x), u^3(x))$$

est égal à 0, 1, 2, 3 ou 4.

122.

- On considère un espace vectoriel de dimension (n + 1)et deux endomorphismes u et v. On suppose que v est nilpotent et que $u \circ v = v \circ u$.
- 1.a Le sous-espace $\operatorname{Im} v$ est un sous-espace de dimension inférieure à n, stable par u et par v.
- 1.b Si u' et v' sont les endomorphismes induits par restriction de u et v à Im v, alors v' est nilpotent et $u' \circ v' = v' \circ u'$.
- 1.c Quelle est la forme des matrices de u et de v dans une base adaptée à Im v?

2. En déduire que : pour tout espace E de dimension finie, si $v \in L(E)$ est nilpotent et si $u \in L(E)$ commute à v, alors

$$\det(u+v) = \det u.$$

123. Soit u, un endomorphisme nilpotent de E. On sait [112.2] que l'indice de nilpotence d de u est inférieur à dim E. On étudie ici le cas d'égalité.

- 1. La dimension m de Ker u est supérieure à 1.
- 2. Soient $k \in \mathbb{N}^*$ et (e_1, \dots, e_{p_k}) , une base de Ker u^k .
- 2.a Il existe des vecteurs $e_{p_k+1}, \ldots, e_{p_{k+1}}$ tels que

$$(e_1,\ldots,e_{p_k},e_{p_k+1},\ldots,e_{p_{k+1}})$$

soit une base de Ker u^{k+1} .

2.b Les vecteurs $u^k(e_{p_k+1}), \ldots, u^k(e_{p_{k+1}})$ sont des vecteurs linéairement indépendants de Ker u.

3. Pour tout entier $k \in \mathbb{N}$,

$$k \leq \dim(\operatorname{Ker} u^k) \leq k \dim(\operatorname{Ker} u)$$

et l'indice de nilpotence d de u vérifie :

$$\frac{\dim E}{\dim(\operatorname{Ker} u)} \leqslant d \leqslant \dim E.$$

En particulier, $d = \dim E$ si, et seulement si, $\dim(\operatorname{Ker} u) = 1$.

124. Soient A et B, deux matrices carrées complexes. On suppose que B est nilpotente et que AB = 0.

1. Les matrices A et B sont semblables à des matrices de la forme

$$\begin{pmatrix} 0 & A_1 \\ 0 & A_2 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} B_1 & B_2 \\ 0 & 0 \end{pmatrix}.$$

2. Les matrices A et A + B ont même spectre.

VI

Étude algébrique des endomorphismes

VI.1 Polynôme minimal

125. L'idéal annulateur [29] d'un endomorphisme u n'est vraiment utile pour connaître u que s'il n'est pas réduit à $\{0\}$, c'est-à-dire s'il existe au moins un polynôme annulateur non nul de u. C'est toujours le cas en dimension finie [**6.84.9**].

125.1 S'il existe un polynôme annulateur non nul de u, alors il existe un, et un seul, polynôme unitaire μ_0 tel que l'idéal annulateur de u soit l'ensemble des multiples de μ_0 . \rightarrow [6.73.3] 125.2 $\stackrel{\checkmark}{}$ Si u admet un polynôme annulateur non nul, le polynôme

minimal de u est l'unique polynôme annulateur unitaire qui divise tous les polynômes annulateurs de u.

125.3 Un polynôme P est un polynôme annulateur de u si, et seulement si, P est divisible par le polynôme minimal de u.

$$(P(u) = \omega) \iff (\mu_0 \mid P)$$

125.4 Deux endomorphismes u et v ont même polynôme minimal si, et seulement si, ils ont les mêmes polynômes annulateurs.
125.5 Si tout polynôme annulateur de u est aussi un polynôme annulateur de v, alors le polynôme minimal de v divise le polynôme minimal de u.

126.1 Un polynôme P est un polynôme annulateur de la matrice diagonale

$$A = Diag(\alpha_1, \ldots, \alpha_n)$$

si, et seulement si, les scalaires $\alpha_1, \ldots, \alpha_n$ sont des racines de P.

126.2 Un polynôme P est un polynôme annulateur de la matrice diagonale par blocs

$$A = Diag(A_1, \ldots, A_r)$$

si, et seulement si, P est un polynôme annulateur de chacun des blocs diagonaux A_1, \ldots, A_r .

126.3 Si la matrice A est triangulaire et si P est un polynôme annulateur de A, alors les coefficients diagonaux de A sont des racines de P.

127. Polynômes annulateurs et relations de liaison Soit $u \in L(E)$.

127.1→ *Il existe un polynôme annulateur non nul de u dont le degré est inférieur à d si, et seulement si, la famille*

$$(I_E, u, \ldots, u^d)$$

est liée.

127.2→ Si E est un espace vectoriel de dimension finie, alors tout endomorphisme de E possède un polynôme minimal.

127.3→ Théorème de Cayley-Hamilton

Si E est un espace vectoriel de dimension finie, alors le polynôme caractéristique de $u \in L(E)$ est un polynôme annulateur de $u \to [148]$ 127.4 Le polynôme minimal de u divise le polynôme caracté-

ristique de u.

127.5 Le degré du polynôme minimal de $u \in L(E)$ est inférieur à la dimension de E.

127.6 Le polynôme minimal de $A \in \mathfrak{M}_n(\mathbb{K})$ est égal au polynôme caractéristique de A si, et seulement si, les matrices I_n , A, ..., A^{n-1} sont linéairement indépendantes.

128. Caractérisation du polynôme minimal

Soit $u \in L(E)$.

128.1→ Si u admet un polynôme annulateur non nul, alors le polynôme minimal de u est le polynôme unitaire annulateur de u de plus bas degré. \rightarrow [**6.73.2**]

128.2 Si u admet un polynôme minimal μ_0 et s'il existe un vecteur $x_0 \in E$ tel que la famille

$$(x_0, u(x_0), \dots, u^N(x_0))$$

soit libre, alors le degré du polynôme minimal μ_0 est strictement supérieur à N.

129. Exemples

129.1 Les homothéties sont les endomorphismes qui ont un polynôme minimal de degré 1.

129.2 Le polynôme minimal d'un projecteur est X(X-1) en général.

129.3 Le polynôme minimal d'une symétrie est (X-1)(X+1) en général.

129.4 L'endomorphisme u est nilpotent d'indice d si, et seulement si, son polynôme minimal est égal à X^d .

130. Racines et facteurs du polynôme minimal

On suppose que l'endomorphisme u admet un polynôme minimal μ_0 .

130.1 Si un polynôme non constant P divise le polynôme minimal de u, alors l'endomorphisme P(u) n'est pas injectif.

130.2 Si le polynôme minimal μ_0 et le polynôme Q sont premiers entre eux, alors l'endomorphisme Q(u) est inversible.

130.3→ Les racines du polynôme minimal de u sont les valeurs propres de u

130.4 L'endomorphisme u est inversible si, et seulement si, son polynôme minimal μ_0 n'est pas divisible par X. Dans ce cas,

$$\mu_0 = X^d + a_{d-1}X^{d-1} + \dots + a_1X + a_0$$

avec $a_0 \neq 0$ et l'inverse de u est un polynôme en u:

$$u^{-1} = \frac{-1}{a_0} (u^{d-1} + a_{d-1}u^{d-2} + \dots + a_1 I_E).$$

Algèbre des polynômes en u

Soit u, un endomorphisme de E.

S'il existe un polynôme annulateur de u de degré d, alors

$$\mathbb{K}[u] = \text{Vect}(\mathbf{I}_E, u, \dots, u^{d-1})$$
 et $\dim \mathbb{K}[u] \leq d$.

131.2 La famille $(u^k)_{k\in\mathbb{N}}$ est liée si, et seulement si, l'algèbre $\mathbb{K}[u]$ est un espace de dimension finie.

131.3 Si l'algèbre $\mathbb{K}[u]$ est un espace de dimension infinie, alors la famille $(u^k)_{k \in \mathbb{N}}$ est une base de $\mathbb{K}[u]$.

131.4 Si l'algèbre $\mathbb{K}[u]$ est un espace de dimension finie, alors il existe un entier $n \in \mathbb{N}$ tel que la famille (I_E, u, \dots, u^n) soit une base de $\mathbb{K}[u]$.

131.5→ $L'algèbre \mathbb{K}[u]$ est un espace de dimension finie si, et seulement si, u admet un polynôme minimal u_0 .

Dans ce cas, la sous-algèbre $\mathbb{K}[u] \subset L(E)$ des polynômes en u admet

$$(\mathbf{I}_E, u, \ldots, u^{d-1})$$

et, en particulier, dim $\mathbb{K}[u] = \deg u_0$.

132. Soit $k \in \mathbb{C}$.

132.1 Le sous-espace propre de la matrice

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & k & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

associé à la valeur propre 0 est un plan.

132.2 Le polynôme minimal de A est égal à $X(X^2 - kX - 3)$. La matrice A est diagonalisable si, et seulement si, $k \neq \pm 2i\sqrt{3}$.

Polynômes annulateurs et réduction des endomorphismes

133. Convention

On suppose désormais que *E* est un espace de dimension finie.

Lemme de décomposition des noyaux

Soit $P = P_1 P_2 \cdots P_r$, une factorisation en polynômes deux à deux premiers entre eux. Pour tout $1 \le i \le r$, on note Q_i , le quotient de la division euclidienne de P par P_i :

$$\forall \ 1 \leqslant i \leqslant r, \qquad P = P_i Q_i.$$

Il existe [7.25.2] des polynômes $A_1, ..., A_r$ tels que

$$\sum_{i=1}^{r} A_i Q_i = 1.$$

Suite de [134] – On suppose que P est un polynôme annulateur de l'endomorphisme u.

Les endomorphismes définis par

$$\forall \ 1 \leqslant i \leqslant r, \qquad p_i = (A_i Q_i)(u) \in \mathbb{K}[u]$$

sont des projecteurs tels que

$$\sum_{i=1}^r p_i = \mathrm{I}_E \quad \text{et} \quad \forall \ i \neq j, \quad p_i \circ p_j = 0.$$

Ces projecteurs sont associés à une décomposition en somme directe de E: \rightarrow [25]

$$E = \bigoplus_{i=1}^{r} \operatorname{Im} p_{i}.$$

135.2 Chaque sous-espace Im p_i est stable par u [20] et P_i est un polynôme annulateur de l'endomorphisme induit par restriction de u à Im p_i :

$$\forall \ 1 \leq i \leq r$$
, $\operatorname{Im} p_i = \operatorname{Ker}[P_i(u)]$.

135.3→ Si $P \in \mathbb{K}[X]$ est un polynôme annulateur de u dont on connaît une factorisation en produit de polynômes deux à deux premiers entre eux:

$$P=P_1P_2\cdots P_r,$$

alors

$$E = \bigoplus_{i=1}^{r} \operatorname{Ker}[P_i(u)]$$

et les projections $(p_i)_{1 \le i \le r}$ associées à cette décomposition en somme directe sont des polynômes en u.

Suite de [134] – On revient au cas général : on ne suppose plus que P est un polynôme annulateur de u et on considère encore les endomorphismes définis par

$$p_i = A_i(u) \circ Q_i(u)$$

pour tout $1 \le i \le r$.

136.1

$$\forall x \in E, \quad x = \sum_{i=1}^{r} p_i(x).$$

136.2 Chaque sous-espace $\operatorname{Ker} P_i(u)$ est contenu dans le noyau de p_i , quel que soit $i \neq i$.

136.3 Les sous-espaces $\operatorname{Ker} P_i(u)$ sont en somme directe.

136.4→ Si $P = P_1 P_2 \cdots P_r$ est une factorisation en polynômes deux à deux premiers entre eux, alors

$$\operatorname{Ker} P(u) = \bigoplus_{i=1}^{r} \operatorname{Ker} P_i(u).$$

Caractérisation polynomiale des endomorphismes diagonalisables

On peut enfin caractériser les endomorphismes diagonalisables par l'étude de leurs polynômes annulateurs.

137.1 Si *u* est diagonalisable, alors le polynôme

$$\mu_0 = \prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)$$

est le polynôme minimal de u et

$$1 \leqslant \deg(\mu_0) = \#(\operatorname{Sp}(u)) \leqslant \dim E.$$

137.2→ *Les propositions suivantes sont équivalentes.*

- L'endomorphisme u est diagonalisable. 1.
- 2. L'endomorphisme u admet un polynôme annulateur scindé à racines simples.
 - Le polynôme minimal de u est scindé à racines simples. 3.

Restriction à un sous-espace stable

On suppose que F est un sous-espace stable par $u \in L(E)$ et on note u_F , l'endomorphisme de F induit par restriction de u.

138.1 Le spectre de u_F est contenu dans le spectre de u et les sous-espaces propres de u_F sont contenus dans les sous-espaces propres de u.

138.2→ *Le polynôme minimal de u_F divise le polynôme minimal de u.* **138.3→** Si u est un endomorphisme diagonalisable et si F est un sousespace stable par u, alors l'endomorphisme u_F de F induit par restriction de u est diagonalisable et

$$F = \bigoplus_{\lambda \in \operatorname{Sp}(u)} (F \cap \operatorname{Ker}(u - \lambda \operatorname{I}_{E})).$$

Cas d'un polynôme minimal scindé

Réduction des matrices de $\mathfrak{M}_2(\mathbb{C})$

Le polynôme minimal μ d'une matrice $A\in\mathfrak{M}_2(\mathbb{C})$ est scindé et son degré est inférieur à 2.

139.1 Si $\mu = (X - \lambda)$, alors $A = \lambda I_2$. 139.2 Si $\mu = (X - \lambda)(X - \mu)$, alors A est semblable à

$$\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}.$$

Si $\mu = (X - \lambda)^2$, alors A est semblable à \rightarrow [119]

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

Suite de [137.2] – Soit $u \in L(E)$, un endomorphisme admettant un polynôme minimal scindé.

Si le polynôme minimal de u admet pour factorisation :

$$\mu = \prod_{k=1}^{r} (X - \lambda_k)^{m_k}$$

alors [28.2] les sous-espaces $F_k = \text{Ker}(u - \lambda_k I_E)^{m_k}$ sont stables

140.2 Pour tout $1 \le k \le r$, l'endomorphisme u_k induit par restriction de u à F_k est la somme d'une homothétie et d'un endomorphisme nilpotent de F_k :

$$u_k = \lambda_k \operatorname{I}_{F_k} + (u_k - \lambda_k \operatorname{I}_{F_k}).$$

140.3 → Si l'endomorphisme u admet un polynôme annulateur scindé, alors il existe une décomposition de E en somme directe de sous-espaces stables par u:

$$E = \bigoplus_{k=1}^{r} F_k$$

tels que, pour tout $1\leqslant k\leqslant r$, l'endomorphisme de F_k induit par restriction de u est la somme de l'homothétie de rapport λ_k et d'un endomorphisme nilpotent.

140.4 Pour tout $1 \le k \le r$, il existe [113.5] une base \mathcal{B}_k de F_k dans laquelle la matrice de u_k est de la forme

$$A_k = \begin{pmatrix} \lambda_k & \star & & \star & \\ 0 & & & & \\ \downarrow & & & \star \\ 0 & & & 0 & \lambda_k \end{pmatrix}.$$

140.5 Il existe une base de E dans laquelle la matrice de u est de la forme

$$Diag(A_1, \ldots, A_r)$$
.

Entraînement

- 141. Questions pour réfléchir
 - Si $P \mid Q$, alors $\operatorname{Ker} P(u) \subset \operatorname{Ker} Q(u)$.
- Soit u, un endomorphisme de E, espace vectoriel réel, tel que $u^2 = u - I_E$. Quel est le polynôme minimal de u?
- Si $A \in \mathfrak{M}_n(\mathbb{K})$ est proportionnelle à son carré A^2 , quel peut être le polynôme minimal de A? Et celui de A^2 ?
- Comparer le polynôme minimal de $A \in \mathfrak{M}_n(\mathbb{K})$ aux polynômes minimaux des matrices

$$B = \begin{pmatrix} A & 0_n \\ 0_n & A \end{pmatrix} \in \mathfrak{M}_{2n}(\mathbb{K}) \quad \text{et} \quad C = \begin{pmatrix} A & A \\ 0_n & A \end{pmatrix} \in \mathfrak{M}_{2n}(\mathbb{K}).$$

Soit $A \in \mathfrak{M}_2(\mathbb{K})$. Le polynôme

$$X^2 - (\operatorname{tr} A)X + (\det A)$$

est un polynôme annulateur de A. Comparer avec [127.3].

- 6. Soit $A \in GL_n(\mathbb{K})$. Comparer les polynômes minimaux de A et de A^{-1} .
 - Préciser les cas particuliers de [129.2] et de [129.3].
- On suppose que u admet un polynôme minimal μ_0 . Comparer le polynôme minimal μ_{λ} de $u - \lambda I_{E}$ à μ_{0} pour tout
- On considère un endomorphisme u de E qui admet un polynôme minimal μ_0 . (On ne suppose pas pour autant que Eest un espace de dimension finie.)

- 9.a L'endomorphisme u est inversible si, et seulement si, il est injectif.
- 9.6 Si P et μ_0 sont premiers entre eux, alors l'endomorphisme P(u) est inversible. Réciproque?
- 9.c Si P(u) n'est pas inversible, le polynôme P divise-t-il le polynôme minimal de *u*?
- Décrire la sous-algèbre $\mathbb{K}[u] \subset L(E)$ lorsque u est un projecteur; une symétrie; un endomorphisme nilpotent.
- Suite de [131] Si un polynôme annulateur non nul a un degré inférieur à dim $\mathbb{K}[u]$, alors il est associé au polynôme minimal.
- Un endomorphisme *u* admet au moins un vecteur propre si, et seulement si, son polynôme minimal admet au moins une
- Si E est un espace vectoriel réel et si le degré du polynôme minimal de $u \in L(E)$ est impair, alors il existe au moins une droite de *E* stable par *u*.
- Si $\mathbb{K} = \mathbb{R}$ et si la dimension de E est impaire, alors il existe au moins une droite stable par u.
- Deux endomorphismes ayant un même polynôme minimal ont-ils même polynôme caractéristique?
- Deux endomorphismes ayant un même polynôme carac-16. téristique ont-ils même polynôme minimal?
- Appliquer [135.3] et reconnaître les projections p_i : 17.
- 17.a
- quand u est un projecteur avec P = X(X 1); quand u est une symétrie avec P = (X 1)(X + 1).
- Suite de [135.3] Un sous-espace F stable par <math>u est aussi stable par les projections $(p_i)_{1 \le i \le r}$ et admet une décomposition en somme directe:

$$F = \bigoplus_{i=1}^r [F \cap \operatorname{Ker} P_i(u)].$$

- Si u admet un polynôme annulateur qui n'est pas irréductible, alors il existe une base de E dans laquelle la matrice de *u* est diagonale par blocs. Expliciter un polynôme annulateur pour chaque bloc diagonal.
- Un endomorphisme est diagonalisable si, et seulement si, le degré de son polynôme minimal est égal au cardinal de son spectre.
- Un endomorphisme u admettant $(X \lambda)^m$ pour polynôme annulateur est diagonalisable si, et seulement si, c'est une
- Une matrice diagonale par blocs est diagonalisable si, et seulement si, chaque bloc diagonal est diagonalisable.
 - 23.a Si le bloc A_1 n'est pas diagonalisable, alors la matrice

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$$

n'est pas diagonalisable.

23.b Les matrices suivantes sont-elles diagonalisables?

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix}$$

Une matrice $A \in GL_6(\mathbb{R})$ telle que 142.

$$A^3 - 3A^2 + 2A = 0$$

est diagonalisable. De plus, si tr(A) = 8, alors

$$\chi_A = (X-1)^4 (X-2)^2$$
.

- **143.** *Suite de* [130.2] Si P est le polynôme minimal d'une matrice diagonalisable, alors P'(A) est inversible.
- Suite de [43.2] Quel est le polynôme minimal d'une matrice carrée de rang 1?
- 145. La matrice

$$A = \begin{pmatrix} 3 & -3 & 2 \\ -1 & 5 & -2 \\ -1 & 3 & 0 \end{pmatrix}$$

est-elle inversible?

Si une matrice $R \in \mathfrak{M}_3(\mathbb{R})$ vérifie $R^2 = A$, alors elle commute à A et il existe une matrice $P \in GL_3(\mathbb{R})$ telle que $P^{-1}AP$ et $P^{-1}RP$ soient diagonales.

Résoudre l'équation $R^2 = A$.

146. Soit $A = (a_{i,j})_{1 \le i,j \le n}$, la matrice dont tous les coefficients sont nuls, sauf $a_{1,n} = 1$ et $a_{n,1} = -1$.

146.1 Le polynôme minimal de A est égal à $X(X^2 + 1)$, donc A est diagonalisable dans $\mathfrak{M}_n(\mathbb{C})$, mais pas dans $\mathfrak{M}_n(\mathbb{R})$.

146.2 Comme $\operatorname{Ker}(A^2 + I_n) = \operatorname{Im} A$, alors $\operatorname{Ker} A$ et $\operatorname{Im} A$ sont supplémentaires dans $\mathfrak{M}_{n,1}(\mathbb{R})$.

147. Existence de sous-espaces stables en dimension finie Soit E, un espace de dimension finie sur le corps \mathbb{K} : tout endomorphisme u de E admet un polynôme minimal et son spectre

est un ensemble fini. **147.1** * $Si \mathbb{K} = \mathbb{C}$, pour tout endomorphisme u de E, il existe au moins une droite vectorielle stable par u.

147.2 On suppose que $\mathbb{K} = \mathbb{R}$. Soit $P_0 \in \mathbb{R}[X]$, un polynôme de degré 2 qui divise le polynôme minimal de u.

- 1. Il existe un vecteur x_0 non nul dans Ker $P_0(u)$.
- 2. Pour tout vecteur x_0 non nul de Ker $P_0(u)$, le plan

$$Vect(x_0, u(x_0))$$

est stable par u.

147.3 * $Si \mathbb{K} = \mathbb{R}$, pour tout endomorphisme u de E, il existe un sous-espace F stable par u tel que $1 \leq \dim F \leq 2$.

148. Théorème de Cayley-Hamilton pour les matrices triangulaires

On suppose que l'endomorphisme u de E est représenté dans la base $\mathcal{B} = (e_1, \dots, e_d)$ par une matrice triangulaire dont les coefficients diagonaux sont $\lambda_1, \dots, \lambda_d$. On pose $F_0 = \{0_E\}$ et

$$\forall 1 \leq k \leq d$$
, $F_k = \text{Vect}(e_1, \dots, e_k)$.

- 1. Pour tout $1 < k \le d$, l'image de F_k par $(u \lambda_k \mathbf{I}_E)$ est contenue dans F_{k-1} .
- 2. Le polynôme $(X \lambda_1) \cdots (X \lambda_d)$ est un polynôme annulatour de u
- 3. Peut-on déduire le théorème de Cayley-Hamilton de ce qui précède? \rightarrow [206]
- **149.** *Suite de* [143] Soient $A \in \mathfrak{M}_n(\mathbb{C})$ et

$$B = \begin{pmatrix} A & 0 & A \\ 0 & A & 0 \\ 0 & 0 & A \end{pmatrix} \in \mathfrak{M}_{3n}(\mathbb{C}).$$

Alors

$$\forall P \in \mathbb{C}[X], \qquad P(B) = \begin{pmatrix} P(A) & 0 & AP'(A) \\ 0 & P(A) & 0 \\ 0 & 0 & P(A) \end{pmatrix}$$

et B est diagonalisable si, et seulement si, A = 0.

150. Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Les matrices

$$B = \begin{pmatrix} A & 4A \\ A & A \end{pmatrix} \quad \text{et} \quad C = \begin{pmatrix} 3A & 0 \\ 0 & -A \end{pmatrix}$$

sont semblables dans $\mathfrak{M}_{2n}(\mathbb{C})$. La matrice B est diagonalisable si, et seulement si, la matrice A est diagonalisable.

151. Caractérisation polynomiale des endomorphismes trigonalisables

On cherche une caractérisation plus souple que [108.2] des endomorphismes trigonalisables.

151.1 Soient $A \in \mathfrak{M}_n(\mathbb{K})$ et μ_0 , le polynôme minimal de A. Si $\lambda \in \mathbb{K}$ est une valeur propre de A, alors la matrice A est semblable à une matrice de la forme

$$\begin{pmatrix} \lambda & \star \\ 0 & A_{n-1} \end{pmatrix}$$

où la sous-matrice $A_{n-1}\in\mathfrak{M}_{n-1}(\mathbb{K})$ admet μ_0 pour polynôme annulateur.

151.2 Soit $u \in L(E)$. Les propositions suivantes sont équivalentes :

- 1. L'endomorphisme *u* est trigonalisable.
- 2. Il existe un polynôme scindé annulateur de *u*.
- 3. Le polynôme minimal de *u* est scindé.
- 4. Le polynôme caractéristique de *u* est scindé.

152. Projecteurs spectraux

On considère un endomorphisme $u \in L(E)$, qu'on suppose diagonalisable. L'espace E est alors somme directe des sous-espaces propres :

(5)
$$E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} \operatorname{Ker}(u - \lambda \operatorname{I}_{E}).$$

Les **projecteurs spectraux** de u sont les projections $(p_{\lambda})_{\lambda \in \operatorname{Sp}(u)}$ associées à la décomposition de E en somme directe des sousespaces propres. $\to [24]$

152.1 On déduit de la décomposition (5) de E la décomposition suivante des vecteurs de x:

(6)
$$\forall x \in E, \qquad x = \sum_{\lambda \in \mathrm{Sp}(u)} p_{\lambda}(x)$$

et comme cette décomposition est adaptée à u, on en déduit que

(7)
$$\forall Q \in \mathbb{K}[X], \quad Q(u) = \sum_{\lambda \in \mathrm{Sp}(u)} Q(\lambda) p_{\lambda}.$$

152.2 En particulier,

(8)
$$u = \sum_{\lambda \in \operatorname{Sp}(u)} \lambda \, p_{\lambda}$$

et les projecteurs spectraux p_{λ} sont des polynômes en u.

152.3 Si u est inversible, alors

$$u^{-1} = \sum_{\lambda \in \operatorname{Sp}(u)} \lambda^{-1} p_{\lambda}.$$

152.4 Pour tout $1 \le i \le r$, on note \mathcal{B}_i , une base du sous-espace propre $\operatorname{Ker}(u - \lambda_i \operatorname{I}_E)$. En concaténant ces bases, on obtient une base \mathcal{B}_0 de E, constituée de vecteurs propres de u, dans laquelle la matrice de la projection p_i est

$$Diag(0,...,0,I_{d_i},0,...,0)$$

où $d_i = \dim \operatorname{Ker}(u - \lambda_i \operatorname{I}_E)$.

152.5 La décomposition (8) de u se traduit matriciellement dans cette base \mathcal{B}_0 par :

$$\begin{pmatrix} \lambda_1 I_{d_1} & & & \\ & \lambda_k I_{d_k} & & \\ & & \lambda_r I_{d_r} \end{pmatrix} = \sum_{k=1}^r \lambda_k \cdot \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & I_{d_k} & \\ & & & 0 \\ & & & & 0 \end{pmatrix}$$

et dans une base quelconque B par

$$\mathfrak{Mat}_{\mathscr{B}}(u) = \sum_{k=1}^r \lambda_k \cdot Q \begin{pmatrix} 0 & & & & \\ & 0 & & & \\ & & I_{d_k} & & \\ & & & 0 & \\ & & & & 0 \end{pmatrix} Q^{-1}$$

où Q est la matrice de passage de la base \mathcal{B} à la base \mathcal{B}_0 . 153.

- 1. Soit $M \in \mathfrak{M}_n(\mathbb{C})$. Si M^2 est diagonalisable et inversible, alors M est diagonalisable.
- 2. Soit $A \in \mathfrak{M}_n(\mathbb{C})$. Si $1 \notin \operatorname{Sp}(A)$ et si $A^2 2A$ est diagonalisable, alors A est diagonalisable.

154. Suite de [70] -

- 1. Tout polynôme annulateur de B est aussi un polynôme annulateur de A.
- 2. On suppose que le polynôme minimal ${\cal P}$ de ${\cal A}$ est scindé à racines simples.

$$P = \prod_{k=0}^{r} (X - \lambda_k)$$

2.a Si A est inversible, alors

$$Q = \prod_{k=0}^{r} (X^2 - \lambda_k^2)$$

est un polynôme annulateur de B.

2.b Si $\lambda_0 = 0$, alors

$$Q = X \prod_{k=1}^{r} (X^2 - \lambda_k^2)$$

est un polynôme annulateur de B.

3. La matrice *B* est diagonalisable si, et seulement si, la matrice *A* est diagonalisable. Comparer avec [84].

VII

Applications

VII.1 Calcul du polynôme minimal

155. Soit $A \in \mathfrak{M}_n(\mathbb{K})$.

155.1 Il existe un, et un seul, polynôme $\mu_0 \in \mathbb{K}[X]$ qui soit un polynôme unitaire et annulateur de A et qui divise tous les polynômes annulateurs de A.

155.2 Le polynôme μ_0 est le polynôme unitaire annulateur de A de plus bas degré possible.

155.3 Le polynôme minimal de $A \in \mathfrak{M}_n(\mathbb{K})$ est le polynôme unitaire annulateur de A de plus bas degré possible.

155.4 Deux matrices ont même polynôme minimal si, et seulement si, elles ont les mêmes polynômes annulateurs.

155.5→ Si $A = \mathfrak{Mat}_{\mathscr{B}}(u)$, alors les polynômes minimaux de A et de u sont les mêmes.

156. Méthode générale

156.1 Si *P* est un polynôme annulateur de *A*, alors le polynôme minimal de *A* est un diviseur unitaire de *P*.

156.2 Le degré du polynôme minimal de A est supérieur à n si, et seulement si, la famille (I, A, \ldots, A^{n-1}) est libre.

156.3→ Soit P, un polynôme annulateur de $A \in \mathfrak{M}_n(\mathbb{K})$, unitaire et de degré d. Si la famille

$$(I, A, \ldots, A^{d-1})$$

est libre, alors P est le polynôme minimal de A.

156.4 Les polynômes minimaux des matrices

$$A_{1} = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} -5 & -6 & -4 \\ 3 & 4 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$
$$A_{3} = \begin{pmatrix} -3 & -4 & -4 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

sont respectivement

$$\mu_1 = X^2 - 3X + 2$$
 $\mu_2 = X^3 - X$
 $\mu_3 = X^2 - X$
 $\mu_4 = X^2 - 2X + 1.$

157. Cas d'une matrice diagonalisable

157.1 Si la matrice A est diagonale, son polynôme minimal est l'unique polynôme unitaire scindé à racines simples dont les racines sont les coefficients diagonaux de A.

157.2 Si la matrice *A* est diagonalisable :

$$A \equiv \text{Diag}(\lambda_1, \ldots, \lambda_n),$$

alors son polynôme minimal est le polynôme unitaire, scindé, à racines simples dont les racines sont les valeurs propres de A:

$$\mu_A = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda).$$

158. Exemples

Les matrices suivantes sont-elles diagonalisables? Quels sont leurs polynômes minimaux?

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 & 3 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 2 & 3 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
0 & 3 & 4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

159. Soit $A \in \mathfrak{M}_2(\mathbb{R})$ telle que ${}^tA = A^2$. Quels sont les polynômes minimaux possibles pour A? \rightarrow [184]

VII.2 Puissances d'une matrice

Calcul par réduction

On suppose que la matrice $A \in \mathfrak{M}_d(\mathbb{K})$ est diagonalisable. Il existe une matrice inversible Q et une matrice diagonale D telles que $D = Q^{-1}AQ$.

160.1

$$\forall k \in \mathbb{N}, \quad A^k = QD^kQ^{-1}$$

160.2 Si le spectre de A est égal à $\{\lambda_1,\ldots,\lambda_r\}$, alors il existe une famille $(P_k)_{1\leqslant k\leqslant r}$ de matrices de projections telles que

$$\forall n \in \mathbb{N}, \quad A^n = \sum_{k=1}^r \lambda_k^n P_k.$$

Ces matrices P_k représentent les projecteurs spectraux de A.

Utilisation d'un polynôme annulateur

On suppose connu un polynôme annulateur P_0 de A (par exemple, le polynôme minimal).

161.1 On effectue la division euclidienne de X^k par P_0 :

$$X^k = Q_k P_0 + R_k$$

et on en déduit que $A^k = R_k(A)$.

161.2 Lorsque le polynôme P_0 est scindé à racines simples, on détermine le reste de la division euclidienne de X^k par P_0 en résolvant un système de Vandermonde.

161.3 La formule de Taylor donne le reste de la division euclidienne de X^k par $(X - \lambda)^d$.

162. Calcul de l'inverse

Soit *A*, une matrice inversible.

162.1 La matrice A admet un polynôme annulateur dont le terme constant n'est pas nul et son inverse peut être exprimé comme un polynôme en A. \rightarrow [130.4]

162.2 Si A est diagonalisable, alors l'inverse de A est diagonalisable et peut être calculé par réduction comme au [160].

VII.3 Résolution d'un système différentiel

Une fonction $X:I\to\mathfrak{M}_{n,1}(\mathbb{K})$ est de classe \mathscr{C}^1 lorsque les composantes de la matrice colonne X sont des fonctions de classe \mathscr{C}^1 à valeurs dans \mathbb{K} .

$$X(t) = \langle x_1(t), x_2(t), \dots, x_n(t) \rangle$$

Dans ce cas, les composantes de la dérivée X' sont les dérivées des composantes de X.

$$X'(t) = \langle x_1'(t), x_2'(t), \dots, x_n'(t) \rangle$$

164. 🗠 Un système différentiel du premier ordre à coefficients constants est de la forme

$$\forall t \in I, \quad X'(t) = AX(t)$$

où $X: I \to \mathfrak{M}_{n,1}(\mathbb{K})$, une fonction de classe \mathscr{C}^1 et $A \in \mathfrak{M}_n(\mathbb{K})$ est une matrice (indépendante de t).

Réduction d'un système différentiel

Soient $Q \in GL_n(\mathbb{K})$, $\Delta = Q^{-1}AQ$ et $Y(t) = Q^{-1}X(t)$. 1. Si $X: I \to \mathfrak{M}_{n,1}(\mathbb{K})$, alors $Y: I \to \mathfrak{M}_{n,1}(\mathbb{K})$ est de classe \mathscr{C}^1 et

$$\forall t \in I, \quad Y'(t) = Q^{-1}X'(t).$$

La fonction X vérifie X' = AX si, et seulement si, la fonction *Y* vérifie $Y' = \Delta Y$.

3. Si A est diagonalisable, il suffit de calculer une base de vecteurs propres de A pour résoudre le système X' = AX. Il faut calculer la base duale de cette base de vecteurs propres, c'est-àdire inverser *Q*, pour tenir compte d'une condition initiale.

166. Suite de [95] - Résoudre les deux systèmes différentiels suivants.

$$\begin{cases} x' = 3x - y - z \\ y' = -x + 3y - z \\ z' = -x - y + 3z \end{cases} \begin{cases} x' = y + z \\ y' = x + z \\ z' = x + y \end{cases}$$

Suite de [116] – Les fonctions x, y et z vérifient le système différentiel

$$\begin{cases} x' = -5x + 2y + 2z \\ y' = -8x + y + 6z \\ z' = -8x + 2y + 5z \end{cases}$$

si, et seulement si, il existe trois constantes K_1 , K_2 et K_3 telles

$$\forall t \in \mathbb{R}, \quad \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} K_1 e^{3t} \\ (K_2 + K_3 t) e^{-t} \\ K_3 e^{-t} \end{pmatrix}.$$

168. Comme les matrices

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & -7 & 5 \end{pmatrix} \quad \text{et} \quad T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

sont semblables, une fonction $f \in \mathscr{C}^3(\mathbb{R})$ est solution de l'équation différentielle

$$\forall t \in \mathbb{R}, \quad x^{(3)}(t) - 5x''(t) + 7x'(t) - 3x(t) = 0$$

si, et seulement si, il existe trois réels A, B et C tels que

$$\forall t \in \mathbb{R}, \quad f(t) = (A + Bt)e^t + Ce^{3t}.$$

Résoudre les systèmes différentiels suivants.

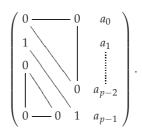
$$\begin{cases} x' = y \\ y' = -x \end{cases} \begin{cases} x' = -3x - y \\ y' = x - y \end{cases} \begin{cases} x' = x + 5y \\ y' = -x - 3y \end{cases}$$

169.2

$$\begin{cases} x' = -3x - 4y + 2t \\ y' = x + y + t \end{cases} \begin{cases} x' = x + y \\ y' = x + y + t \end{cases}$$

VII.4 Matrices compagnons

170. ∠ On appelle matrices compagnons* les matrices de la forme



Le polynôme caractéristique d'une matrice compagnon est égal à son polynôme minimal :

$$X^{p} - (a_{p-1}X^{p-1} + \cdots + a_{1}X + a_{0}).$$

172. Suites récurrentes linéaires

Une suite récurrente linéaire d'ordre $p \ge 2$

$$x_{n+p} = a_{p-1}x_{n+p-1} + \dots + a_0x_n$$

peut être traduite en une suite géométrique vectorielle

$$X_{n+1} = AX_n$$

où ${}^tA\in\mathfrak{M}_p(\mathbb{K})$ est une matrice compagnon. Le calcul des puissances de A donne l'expression de x_n .

173. Équations différentielles linéaires d'ordre p Une équation différentielle linéaire d'ordre $p\geqslant 2$ à coefficients constants

$$x^{(p)}(t) = a_{p-1}x^{(p-1)}(t) + \dots + a_1x'(t) + a_0x(t)$$

peut être traduite en un système différentiel du premier ordre

$$X'(t) = AX(t)$$

où ${}^tA \in \mathfrak{M}_p(\mathbb{K})$ est une matrice compagnon.

174. Soit $\alpha \in \mathbb{R}$. La matrice

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & \alpha^3 \\ 0 & 1 & 0 & -\alpha^2 \\ 0 & 0 & 1 & \alpha \end{pmatrix}$$

est-elle diagonalisable dans $\mathfrak{M}_4(\mathbb{R})$? dans $\mathfrak{M}_4(\mathbb{C})$?

Questions, exercices & problèmes

Perfectionnement

175. Exemples et contre-exemples

- 1. Exemple de matrice dont le polynôme minimal admet au moins une racine double.
- 2. Exemple de matrice admettant un polynôme minimal non scindé dans $\mathbb{R}[X]$.
- 3. Exemple de matrice inversible admettant un polynôme annulateur divisible par *X*.
- 4. Exemple de polynôme annulateur de u dont une racine n'est pas valeur propre de u.
- 5. Exemple d'endomorphisme n'admettant que 0 pour valeur propre sans être nilpotent.
- 6. Éxemple d'endomorphisme admettant une infinité de valeurs propres. Un tel endomorphisme admet-il un polynôme minimal?
- 7. Exemple d'endomorphisme de \mathbb{R}^2 n'ayant pas de valeur propre.
- 8. Exemple d'endomorphisme diagonalisable de $E = \mathbb{R}^n$ qui n'admet pas n valeurs propres deux à deux distinctes.
- 9. Suite de [138.3] Exemple de sous-espaces F, G et H de E tels que $E = G \oplus H$ et que $F \neq (F \cap G) \oplus (F \cap H)$.
- 10. Exemple d'endomorphismes diagonalisables u et v qui n'ont aucun vecteur propre en commun.
- 11. Exemple de matrices de même spectre qui ne sont pas semblables.
- 12.a Exemple d'endomorphismes ayant même polynôme minimal et des polynômes caractéristiques différents.
- 12.b Exemple d'endomorphismes ayant même polynôme caractéristique et des polynômes minimaux différents.

176. Méthodes

1. Comment démontrer qu'une famille de vecteurs est une base?

2. On suppose connu le résultat de la division euclidienne de P par $(X-\alpha)^m$:

$$P = (X - \alpha)^m Q_m + R_m.$$

Comment en déduire le résultat de la division euclidienne de P par $(X-\alpha)^{m+1}$?

- 3. Comment démontrer que deux polynômes sont égaux?
- 4. Vaut-il mieux écrire un polynôme minimal sous forme développée ou sous forme factorisée?
- 5. La matrice d'un endomorphisme $u \in L(E)$ relative à une base \mathscr{B}) étant connue, comment trouver les vecteurs de \mathscr{B} qui sont vecteurs propres de u?
 - 6. Comment démontrer qu'une matrice est diagonalisable?
- 7. Pourquoi calcule-t-on en général $\det(A \lambda I_n)$ pour trouver le polynôme caractéristique de A?
- 8. La connaissance du polynôme caractéristique (resp. du polynôme minimal) de u permet-elle de savoir si u est diagonalisable?

177. Questions pour réfléchir

- 1.a Les endomorphismes les plus simples sont les homothéties.
- 1.b Les endomorphismes les plus simples après les homothéties sont les projections.
- 2. Si A et A^{-1} sont semblables, la matrice A est-elle nécessairement une matrice de symétrie?
 - 3. Suite de [27.6] Réciproque?
- 4.a Soit $A \in \mathfrak{M}_n(\mathbb{R})$. Si $\overline{X} \in \mathfrak{M}_{n,1}(\mathbb{C})$ est un vecteur propre de A associé à $\overline{\lambda}$. L'application $[X \mapsto \overline{X}]$ est-elle un isomorphisme de $\operatorname{Ker}(A \lambda I_n)$ sur $\operatorname{Ker}(A \overline{\lambda} I_n)$?
- 4.b Soient E et F, deux espaces vectoriels complexes de dimension finie. S'il existe une bijection φ de E sur F qui est **semi-linéaire** :

$$\forall x, y \in E, \ \forall \ \lambda \in \mathbb{C}, \quad \varphi(\lambda x + y) = \overline{\lambda}\varphi(x) + \varphi(y)$$

alors E et F sont isomorphes.

- 5. Suite de [62] Étudier la réciproque.
- 6. Comparer les supports de $\sigma \in \mathfrak{S}_n$ et de σ^k pour $k \in \mathbb{N}$.
- 7. Une somme de deux matrices diagonalisables est-elle diagonalisable?
- 8. S'il existe un polynôme P tel que P(u) soit diagonalisable, l'endomorphisme u est-il diagonalisable?
- 9. Si le polynôme caractéristique de u est $(\lambda X)^n$ et si u est diagonalisable, alors u est l'homothétie de rapport λ .
- 10. La connaissance des valeurs propres d'un endomorphisme permet-elle de savoir si cet endomorphisme est, ou non, diagonalicable?
- 11. Que dire des suites $(\operatorname{Ker} u^i)_{i \in \mathbb{N}}$ et $(\operatorname{Im} u^i)_{i \in \mathbb{N}}$ lorsque E est un espace de dimension finie ? de dimension infinie ?
- 12.a Toute matrice $A \in \mathfrak{M}_n(\mathbb{C})$ admet au moins un vecteur propre. Comparer avec [175. 7].
- 12.b Si A et B sont deux matrices de $\mathfrak{M}_n(\mathbb{C})$ qui commutent, alors elles admettent un vecteur propre commun.
- 13. Relier le polynôme minimal d'une matrice diagonale par blocs aux polynômes minimaux des blocs diagonaux.
- 14. Si A est une matrice à coefficients entiers et si le polynôme

$$P_0 = (X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1)$$

est un polynôme annulateur de A, alors P_0 est le polynôme minimal de A.

15. Traduire par un système différentiel linéaire du premier ordre le mouvement d'une particule de masse m et de charge q dans un champ magnétique B uniforme. La matrice de ce système est-elle diagonalisable?

Un système de deux masses égales reliées par des ressorts de mêmes caractéristiques peut être traduit par le système différentiel du second ordre $X^{\prime\prime}(t)=AX(t)$ où

$$A = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}.$$

La matrice A est-elle diagonalisable? Comment résoudre un tel système? Interprétation physique des éléments propres de A?

Soit *E*, un espace de dimension finie.

Si f et g sont deux endomorphismes tels que 178.1

$$E = \operatorname{Im} f + \operatorname{Im} g = \operatorname{Ker} f + \operatorname{Ker} g,$$

alors ces deux sommes sont directes.

Si $(f+g) \in GL(E)$ et si $g \circ f = 0$, alors

$$\operatorname{rg} f + \operatorname{rg} g = \dim E$$
 et $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Si *f* est un endomorphisme non nul tel que

$$\forall g \in L(E), \quad \operatorname{rg}(g \circ f) = \operatorname{rg}(f \circ g),$$

alors f est un automorphisme de E.

Quels que soient les endomorphismes f et g,

$$\operatorname{rg}(f \circ g) \geqslant \operatorname{rg} f + \operatorname{rg} g - \dim E$$
.

179. Soient $A \in \mathfrak{M}_{3,2}(\mathbb{R})$ et $B \in \mathfrak{M}_{2,3}(\mathbb{R})$, telles que

$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Alors $\operatorname{rg} A = \operatorname{rg} B = 2$. Identifier la matrice BA.

Soient E, un espace vectoriel de dimension finie et u, un endomorphisme de E tel que

$$E = \operatorname{Ker} u \oplus \operatorname{Im} u$$
.

180.1 Il existe une base \mathcal{B} de E et une matrice inversible Atelles que

$$\mathfrak{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix}.$$

Il existe [130.4] un polynôme $P_1 \in \mathbb{K}[X]$ tel que

$$P_1(0) = 0$$
 et $P_1(A) = I$.

180.3 La projection sur Ker u parallèlement à Im u est un poly-

181. Une matrice carrée est singulière (c'est-à-dire non inversible) si, et seulement si, elle est équivalente à une matrice nilpotente.

Soit E, un espace vectoriel réel. On suppose que u est un endomorphisme de E tel que $u^3 = I_E$.

$$E = \operatorname{Ker}(u - I_E) \oplus \operatorname{Ker}(u^2 + u + I_E)$$

Existe-t-il une droite stable par u dans $Ker(u^2 + u + I_E)$? La dimension de ce noyau peut-elle être égale à 0? à 1?

En supposant que $\dim E = 2$, quels sont les polynômes minimaux possibles pour u?

Matrice du produit vectoriel

Soit $u = (a, b, c) \in \mathbb{R}^3$, distinct de (0, 0, 0),

$$A = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \quad \text{et} \quad U = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Le polynôme minimal et le polynôme caractéristique de A sont égaux à $X(X^2 + a^2 + b^2 + c^2)$. La matrice A est diagonalisable dans $\mathfrak{M}_3(\mathbb{C})$, mais pas dans $\mathfrak{M}_3(\mathbb{R})$.

- Pour tout $\lambda \in \mathbb{R}^*$, la matrice $B_{\lambda} = A + \lambda I_3$ est inversible
- et il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $B_{\lambda}^{-1} = \alpha A^2 + \beta A + \gamma I_3$. 3. La relation $A^2 = U^t U {}^t U U I_3$ redonne la formule du double produit vectoriel.

Suite de [159] – Si 0 est une valeur propre de A, alors le polynôme minimal de A est X(X-1) et A est semblable à Diag(0,1).

Suite de [69] – Soit $A \in \mathfrak{M}_n(\mathbb{R})$. Décrire les sous-espaces 185. propres de l'endomorphisme $v = [M \mapsto MA]$ de $\mathfrak{M}_n(\mathbb{R})$ en fonction des sous-espaces propres de la matrice A.

Approfondissement

186. Soit (G, \times) , un groupe dont les éléments appartiennent à $\mathfrak{M}_n(\mathbb{R})$.

- L'élément neutre de ce groupe est une matrice de projec-1. tion.
 - Tous les éléments de G ont même rang. 2.

Soient $A \in \mathfrak{M}_n(\mathbb{K})$ et 187.

$$B = \begin{pmatrix} A & A \\ A & A \end{pmatrix}.$$

Calculer B^k pour tout $k \in \mathbb{N}$. Soit P, un polynôme annulateur non nul de A. Expliciter un polynôme $Q \in \mathbb{K}[X]$, non nul, tel que Q(B) = 0.

Localisation des valeurs propres [44] Soit $A \in \mathfrak{M}_n(\mathbb{C})$.

$$\forall \lambda \in \operatorname{Sp}(A), \quad |\lambda| \leqslant \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{i,j}|.$$

Interprétation géométrique de cet encadrement.

Pour tout $a \in \mathbb{C}$, les matrices

$$M(a) = \begin{pmatrix} 1 & a & a \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$$

sont semblables. Pour tout $n \in \mathbb{N}$,

$$M(0)^n = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 0 \end{pmatrix} + 2^n \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix}.$$

Expliciter $M(a)^n$ pour $a \neq 0$.

Crochet de Lie

Soient $B \in \mathfrak{M}_n(\mathbb{C})$ et φ , l'endomorphisme de $\mathfrak{M}_n(\mathbb{C})$ défini par

$$\forall M \in \mathfrak{M}_n(\mathbb{C}), \quad \varphi(M) = MB - BM.$$

Reconnaître le sous-espace propre de φ associé à 0. On suppose que AB-BA=A. 190.1

190.2

$$\forall k \geqslant 1, \quad A^k B - B A^k = k A^k.$$

- Condition pour que A^k soit un vecteur propre de φ ?
- La matrice *A* est nilpotente.

Les vecteurs propres de φ associés à des valeurs propres non nulles sont des matrices nilpotentes.

Soient a et b, deux réels non nuls tels que $|a| \neq |b|$. On considère les matrices

$$B = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$
 et $A = \begin{pmatrix} B & \cdots & B \\ \vdots & & \vdots \\ B & \cdots & B \end{pmatrix} \in \mathfrak{M}_{2n}(\mathbb{R})$

où $n \ge 2$.

1.

1. Le rang de *A* est égal à 2.

La matrice A admet 0 pour valeur propre. Quelle est la dimension du sous-espace propre associé? En donner une base.

- La matrice colonne dont tous les coefficients sont égaux à 1 est un vecteur propre de A. Quelle est la valeur propre associée à ce vecteur propre?
 - La matrice *A* est diagonalisable.

Commutant d'un endomorphisme diagonalisable 192. Soit $f \in L(E)$, un endomorphisme diagonalisable.

Caractériser l'ensemble des matrices M qui commutent à une matrice diagonale.

2. Pour toute valeur propre $\lambda \in \operatorname{Sp}(f)$, on note E_{λ} , le sousespace propre $\operatorname{Ker}(f - \lambda \mathbf{I}_E)$ et d_{λ} , la dimension de ce sousespace propre.

Les quatre propriétés suivantes sont équivalentes :

2.a L'endomorphisme g commute à f.

2.b Chaque sous-espace propre de f est stable par g. 2.c Pour tout $\lambda \in \operatorname{Sp}(f)$, l'endomorphisme g commute au projecteur spectral p_{λ} de f.

2.d Il existe une famille $(g_{\lambda})_{\lambda \in \operatorname{Sp}(f)}$ telle que

$$\forall \lambda \in \operatorname{Sp}(f), \quad g_{\lambda} \in \operatorname{L}(E_{\lambda}) \quad \text{et que} \quad g = \sum_{\lambda \in \operatorname{Sp}(f)} g_{\lambda} \circ p_{\lambda}.$$

La dimension du commutant [6.81] de f est égale à

$$\sum_{\lambda \in \operatorname{Sp}(f)} d_{\lambda}^2.$$

Comparer $\mathbb{K}[f]$ et le commutant de f.

193. Réduction simultanée

Soient u et v, deux endomorphismes de E, espace de dimension

- S'il existe une base \mathcal{B} de E dont les éléments sont à la fois des vecteurs propres pour u et des vecteurs propres pour v, alors les matrices $\mathfrak{Mat}_{\mathscr{B}}(u)$ et de $\mathfrak{Mat}_{\mathscr{B}}(v)$ commutent.
- On suppose que u et v sont diagonalisables et com-2. mutent.
- 2.a Pour tout $\lambda \in \operatorname{Sp}(u)$, le sous-espace $E_{\lambda} = \operatorname{Ker}(u \lambda \operatorname{I}_{E})$ est stable par v et l'endomorphisme v_{λ} induit par restriction de v à E_{λ} est diagonalisable.
- 2.b On pose $A = \mathfrak{Mat}_{\mathscr{B}}(u)$ et $B = \mathfrak{Mat}_{\mathscr{B}}(v)$ où \mathscr{B} est une base adaptée à la décomposition

$$E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}.$$

Il existe une matrice inversible et diagonale par blocs P telle que $P^{-1}BP$ soit diagonale. Que dire de la matrice $P^{-1}AP$?

Condition pour que deux endomorphismes admettent une base commune de vecteurs propres.

Condition sur $A \in \mathfrak{M}_n(\mathbb{C})$ pour que la matrice

$$B = \begin{pmatrix} A & A \\ 0 & I_n \end{pmatrix} \in \mathfrak{M}_{2n}(\mathbb{C})$$

soit diagonalisable.

Suite de [62] – Soit $A \in \mathfrak{M}_n(\mathbb{R})$. S'il existe un polynôme P tel que P(A) soit triangulaire avec des coefficients diagonaux deux à deux distincts, alors A est diagonalisable.

Racine carrée d'une matrice positive

Soit $A \in \mathfrak{M}_n(\mathbb{R})$, une matrice admettant n valeurs propres positives, deux à deux distinctes.

- 1. Suite de [62] S'il existe une matrice $M \in \mathfrak{M}_n(\mathbb{R})$ telle que $M^2 = A$, alors il existe une matrice inversible Q telle que les matrices $Q^{-1}AQ$ et $Q^{-1}MQ$ soient diagonales.
- 2. Il existe une, et une seule, matrice $M \in \mathfrak{M}_n(\mathbb{R})$ admettant *n* valeurs propres positives telle que $M^2 = A$.

197 Équation matricielle du second degré On considère

$$A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}.$$

Il existe $P \in GL_n(\mathbb{R})$ telle que $P^{-1}AP$ soit diagonale.

- Si $M \in \mathfrak{M}_2(\mathbb{R})$ vérifie l'équation $M^2 + M = A$, alors [62] la matrice $P^{-1}MP$ est diagonale.
 - Résoudre l'équation $M^2 + M = A$. 3.

198. Le couple (x, y) est une solution du système différentiel

$$\begin{cases} x'' = 3x + y + e^{2t} \\ y'' = 2x + 2y + 3e^{t} \end{cases}$$

si, et seulement si, il existe quatre réels C_1 , C_2 , C_3 et C_4 tels que

$$\begin{cases} x(t) = -(6t+1)e^t/12 + (12t-19)e^{2t}/72 \\ + C_1e^t + C_2e^{-2t} + C_3e^{-t} + C_4e^{2t}, \\ y(t) = (6t-5)e^t/6 + (12t-43)e^{2t}/72 \\ - 2C_1e^t + C_2e^{2t} - 2C_3e^{-t} + C_4e^{2t}. \end{cases}$$

Suite de [94] – La fonction $X: \mathbb{R} \to \mathfrak{M}_{n,1}(\mathbb{R})$ définie par 199.

$$\forall t \in \mathbb{R}, \quad X_t = \langle x_1(t), x_2(t), x_3(t) \rangle$$

est une solution du système différentiel X'' = AX si, et seulement si, il existe six réels α_1 , α_2 , α_3 , β_1 , β_2 et β_3 tels que

$$\begin{cases} x_1(t) = (\alpha_1 - \alpha_2) \operatorname{ch} t + (\beta_1 - \beta_2) \operatorname{sh} t \\ x_2(t) = -\alpha_1 \operatorname{ch} t - \beta_1 \operatorname{sh} t - \frac{t}{2}(\beta_3 \operatorname{ch} t + \alpha_3 \operatorname{sh} t) \\ x_3(t) = (\alpha_3 - \alpha_2) \operatorname{ch} t + (\beta_3 - \beta_2) \operatorname{sh} t - \frac{t}{2}(\beta_3 \operatorname{ch} t + \alpha_3 \operatorname{sh} t). \end{cases}$$

Pour aller plus loin

200. Questions pour réfléchir

Suite de [44] – Proposer une localisation plus précise des valeurs propres de A.

Le polynôme minimal de $A \in \mathfrak{M}_n(\mathbb{R})$ est aussi le polynôme minimal de A considérée comme un élément de $\mathfrak{M}_n(\mathbb{C})$.

Comment définir et caractériser les endomorphismes diagonalisables d'un espace vectoriel de dimension infinie?

On suppose que *u* est diagonalisable. Pour toute fonction f dont l'ensemble de définition contient le spectre de u, on peut poser

$$f(u) = \sum_{\lambda \in \operatorname{Sp}(u)} f(\lambda) p_{\lambda} \in \mathbb{K}[u].$$

Justifier cette définition en considérant les applications polynomiales. Considérer le cas $f = \exp$.

- 5. Exponentielle d'un projecteur? Exponentielle d'une symétrie?
- On suppose que le polynôme minimal μ_0 de u est un polynôme de degré 2.
- 6.a L'exponentielle de u est une combinaison linéaire de I_E et de u.
 - 6.b Expliciter $\exp(u)$ lorsque $\mu_0 = X^2 + 1$.
- On suppose que $E = F \oplus G$ et on note Γ , l'ensemble des endomorphismes u de E tels que

$$\operatorname{Ker} u = F$$
 et $\operatorname{Im} u = G$.

- L'ensemble Γ est-il un sous-espace de L(E)? 1.
- Quelle est l'allure de la matrice de $u \in \Gamma$ dans une base adaptée à la décomposition $E = F \oplus G$?
- 3. Pour tout $u \in \Gamma$, on note $\varphi(u)$, l'endomorphisme induit par restriction de u à G. L'application φ ainsi définie est une bijection de Γ sur GL(G) et $(\hat{\Gamma}, \circ)$ est un groupe isomorphe à $(GL(G), \circ)$. Quel est l'élément neutre de ce groupe?

On appelle **valeur spectrale** de u tout scalaire λ tel que $(u - \lambda I_E)$ ne soit pas inversible.

- Toute valeur propre est une valeur spectrale. Réciproque en dimension finie?
- 2. Exemple d'un endomorphisme de $\mathbb{K}[X]$ ayant une valeur spectrale mais pas de valeur propre.

3. Si u admet un polynôme minimal, alors toute valeur spectrale est une valeur propre [141. 9.b] et le nombre de valeurs spectrales est fini.

203. Soient A et B, deux matrices de $\mathfrak{M}_n(\mathbb{R})$. On suppose qu'elles sont semblables en tant que matrices de $\mathfrak{M}_n(\mathbb{C})$:

$$\exists P \in GL_n(\mathbb{C}), \quad B = P^{-1}AP$$

et on pose

$$\forall \theta \in \mathbb{R}, \quad P_{\theta} = e^{i\theta}P + e^{-i\theta}\overline{P} \in \mathfrak{M}_n(\mathbb{R}).$$

Il existe un nombre infini de $\theta \in \mathbb{R}$ tels que $P_{\theta} \in GL_n(\mathbb{R})$. Les matrices A et B sont semblables en tant que matrices de $\mathfrak{M}_n(\mathbb{R})$:

$$\exists Q \in GL_n(\mathbb{R}), \quad B = Q^{-1}AQ.$$

204. Endomorphismes semi-simples

Un endomorphisme f de E est **semi-simple** lorsque tout sousespace F de E stable par f admet un supplémentaire G stable par f.

1. On suppose que f est diagonalisable.

1.a Un sous-espace de E, distinct de $\{0_E\}$, est stable par f si, et seulement si, il possède une base de vecteurs propres de f.

1.b L'endomorphisme f est semi-simple.

2. On suppose que \vec{E} est un espace vectoriel complexe et que f est semi-simple.

2.a Il existe (au moins) un sous-espace strict stable par f.

2.b L'endomorphisme *f* est diagonalisable.

3. Exemple d'endomorphisme semi-simple de \mathbb{R}^2 qui n'est pas diagonalisable.

205. Traduire le système différentiel

$$\begin{cases} x'' - 2y'' + y' + x - 3y = 0 \\ 4y'' - 2x'' - x' - 2x + 5y = 0 \end{cases}$$

sous forme matricielle : AX'' + BX' + CX = 0 et déterminer une matrice-ligne L telle que LA = 0. Si $X = \langle x(t), y(t) \rangle$ est une solution du système initial, alors

$$-x'' + 2y'' - y' = 0.$$

Conclure.

206. Sous-espaces cycliques

On cherche ici à démontrer le théorème de Cayley-Hamilton.

206.1 Étude de l'orbite d'un vecteur

On considère un endomorphisme u de E, espace vectoriel de dimension quelconque.

L'**orbite d'un vecteur** $x \in E$ sous l'action d'un endomorphisme u est le sous-espace

$$F_x = \text{Vect}(u^k(x), k \in \mathbb{N}).$$

1. L'orbite de x sous l'action de u est le plus petit sous-espace stable par u qui contienne le vecteur x.

2. Si dim F_x est finie, alors il existe un, et un seul, entier $r_x \in \mathbb{N}$ tel que la famille

$$\left(u^k(x)\right)_{0\leqslant k\leqslant r_x}$$

soit une base de F_x .

3. Le degré du polynôme minimal de u est strictement supérieur à r_x .

4. Si le degré du polynôme minimal de *u* est égal à *d*, alors

$$\forall x \in E, \quad F_x = \text{Vect}(x, u(x), \dots, u^{d-1}(x)).$$

Étudier la réciproque.

206.2 Restriction à un sous-espace cyclique On suppose que

$$\mathscr{B}_x = (x, u(x), \dots, u^r(x))$$

est une base de F_x et on note u_x , l'endomorphisme de F_x induit par restriction de u.

1. Il existe une famille $(\alpha_k)_{0 \le k \le r}$ de scalaires tels que

$$u^{r+1}(x) = \alpha_0 \cdot x + \alpha_1 \cdot u(x) + \dots + \alpha_r \cdot u^r(x).$$

Quelle est la matrice de u_x relative à \mathcal{B}_x ?

2. Le polynôme minimal de u_x est égal à

$$X^{r+1} - (\alpha_0 + \alpha_1 X + \cdots + \alpha_r X^r).$$

206.3 Démonstration du théorème de Cayley-Hamilton

On suppose que E est un espace de dimension finie et on choisit $x \in E$. On note u_x , l'endomorphisme induit par restriction de u au sous-espace $F_x = \text{Vect}(u^k(x), k \in \mathbb{N})$.

1. Le polynôme caractéristique de u_x est un polynôme annulateur de u_x .

2. Le polynôme caractéristique de u_x divise le polynôme caractéristique χ_u de u.

3.
$$\forall x \in E, \quad \chi_u(u)(x) = 0_F.$$

207. On suppose que *u* admet un polynôme annulateur scindé :

$$P = \prod_{k=1}^{r} (X - \alpha_k)^{m_k}$$

où les α_k sont deux à deux distincts.

Les **sous-espaces** caractéristiques de u sont les sous-espaces $E_k = \operatorname{Ker}(u - \alpha_k \operatorname{I}_E)^{m_k}$ pour $1 \le k \le r$.

1. L'espace E est somme directe des sous-espaces caractéristiques de u.

$$E = \bigoplus_{k=1}^{r} \operatorname{Ker}(u - \alpha_{k} \operatorname{I}_{E})^{m_{k}}$$

2. On note $(p_k)_{1 \leqslant k \leqslant r}$, la famille des projections associées à cette décomposition en somme directe et on pose

$$v_k = (u - \alpha_k I_E) \circ p_k$$
.

2.a Pour tout $1 \le k \le r$,

$$\forall i \in \mathbb{N}^*, \quad v_k^i = (u - \alpha_k \operatorname{I}_E)^i \circ p_k$$

et v_k est nilpotent.

2.b L'endomorphisme u_k induit par restriction de u à E_k est la somme d'une homothétie et d'un endomorphisme nilpotent.

3. Comparer $v_k \circ v_j$ et $v_j \circ v_k$ lorsque $j \neq k$.

4. Reconnaître l'endomorphisme

$$\left(\sum_{k=1}^r \alpha_k p_k\right) + \left(\sum_{k=1}^r v_k\right).$$

Les deux termes de la somme commutent-ils?

5. Le polynôme caractéristique de *u* est égal à

$$\prod_{k=1}^{r} (X - \alpha_k)^{d_k}$$

où $d_k = \dim E_k$ pour tout $1 \le k \le r$.

6. Quels résultats a-t-on ainsi redémontrés?