RMS 2022 [1127]

Soit f, un endomorphisme de \mathbb{R}^3 différent de l'endomorphisme nul ω_E et représenté par une matrice A dans la base canonique. On suppose que $f + f^3 = 0$.

1* Démontrer que A n'est pas inversible.

2≈ Démontrer que

$$\mathbb{R}^3 = \operatorname{Ker} f \oplus \operatorname{Ker} (f^2 + I).$$

3 ▶ Démontrer que Ker f n'est pas réduit au vecteur nul.

Démontrer que A est semblable à la matrice

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$

On a supposé que $A + A^3 = 0_3$. Si la matrice A était inversible, on pourrait en déduire que $I_3 + A^2 = 0_3$ et donc que

$$det(A^2) = det(-I_3) = (-1)^3 = -1.$$

Or $det(A^2) = (det A)^2$ et comme $det A \in \mathbb{R}$, il est impossible que $(det A)^2 =$ -1. Donc la matrice A n'est pas inversible.

Le polynôme $X + X^3 = X(X^2 + 1)$ est un polynôme annulateur de f et les facteurs X et $X^2 + 1$ sont premiers entre eux (ils sont irréductibles et ne sont pas associés). Le Théorème de décomposition des noyaux donne directement

$$\mathbb{R}^3 = \text{Ker } f \oplus \text{Ker} (f^2 + I).$$

3 On a démontré que la matrice A n'était pas inversible. Comme f (représenté par A) est un endomorphisme d'un espace de dimension finie, la noninversibilité de f prouve la non-injectivité de f (Théorème du rang). Autrement dit, Ker $f \neq \{0_E\}$.

4. Comme Ker $f \neq \{0_E\}$, il existe un vecteur non nul ε_1 dans Ker f.

Comme $f \neq \omega_E$, le sous-espace $Ker(f^2 + I)$ n'est pas réduit à $\{0_E\}$ et il existe donc un vecteur non nul ϵ_2 dans $Ker(f^2+I)$.

Le sous-espace $Ker(f^2 + I)$ est stable par f (c'est le noyau d'un polynôme en f), donc le vecteur $\varepsilon_3 = f(\varepsilon_2)$ appartient aussi à Ker $(f^2 + I)$.

Si $(\varepsilon_2, \varepsilon_3)$ était liée, alors il existerait $\lambda \in \mathbb{R}$ tel que

$$f(\varepsilon_2) = \varepsilon_3 = \lambda \cdot \varepsilon_2$$

donc ε_2 serait un vecteur propre de f associé à λ . Mais comme $\varepsilon_2 \in \text{Ker}(f^2 + I)$, on aurait aussi

$$-\epsilon_2 = f^2(\epsilon_2) = \lambda^2 \cdot \epsilon_2$$

et donc $\lambda^2 = -1$, ce qui est impossible. On a donc une famille libre de deux vecteurs dans le sous-espace $Ker(f^2 + I)$.

Comme les deux sous-espaces Ker f et $Ker(f^2 + I)$ sont supplémentaires dans \mathbb{R}^3 , que dim Ker $f \ge 1$ et que dim Ker $(f^2 + I) \ge 2$, on a donc

$$\operatorname{Ker} f = \mathbb{R} \cdot \varepsilon_1$$
 et $\operatorname{Ker}(f^2 + I) = \operatorname{Vect}(\varepsilon_2, \varepsilon_3)$,

ce qui prouve que $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 et dans cette base la matrice de f est bien égale à B : les matrices A et B sont donc semblables.