RMS 2022 [1198]

Soient

$$A = \begin{pmatrix} -1 & 0 \\ 10 & 4 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}.$$

1 Calculer les racines réelles des polynômes $X^3 - 2X + 1$ et $X^3 - 2X - 4$.

Déterminer les matrices qui commutent avec la matrice D.

Résoudre l'équation $M^3 - 2M = D$, d'inconnue $M \in \mathfrak{M}_2(\mathbb{R})$.

*A*e Résoudre l'équation $M^3 - 2M = A$, d'inconnue $M \in \mathfrak{M}_2(\mathbb{R})$.

Le polynôme $X^3 - 2X + 1$ admet 1 pour racine évidente. On en déduit que

$$X^3 - 2X + 1 = (X - 1)(X^2 + X - 1) = (X - 1)(X - \alpha)(X - \beta)$$

où $\{\alpha, \beta\} = \{(-1 \pm \sqrt{5})/2\}.$

Le polynôme $X^3 - 2X - 4$ admet 2 pour racine évidente. On en déduit que

$$X^3 - 2X - 4 = (X - 2)(X^2 + 2X + 2)$$

et $X^2 + 2X + 2$ est irréductible dans $\mathbb{R}[X]$.

Considérons une base $\mathcal{B} = (\varepsilon_1, \varepsilon_2)$ de \mathbb{R}^2 et l'endomorphisme u de \mathbb{R}^2 représenté par la matrice D dans cette base \mathcal{B} .

Comme D est diagonale, les vecteurs de $\mathcal B$ sont des vecteurs propres de $\mathfrak u$, associés aux valeurs propres -1 et 4. Les sous-espaces propres de $\mathfrak u$ sont donc des *droites* vectorielles.

lpha Si un endomorphisme ν commute à u, alors tout sous-espace propre de u est aussi stable par ν . Par conséquent, les droites $\mathbb{R} \cdot \varepsilon_1$ et $\mathbb{R} \cdot \varepsilon_2$ sont stables par ν , ce qui signifie que les vecteurs ε_1 et ε_2 sont aussi des vecteurs propres pour ν .

Ainsi, si ν commute à \mathfrak{u} , alors $\mathfrak{Mat}_{\mathscr{B}}(\nu)$ est diagonale.

Réciproquement, si la matrice $\mathfrak{Mat}_{\mathscr{B}}(v)$ est diagonale, alors elle commute à D (deux matrices diagonales commutent toujours) et par conséquent les endomorphismes \mathfrak{u} et v commutent.

En conclusion, les matrices qui commutent à D sont exactement les matrices diagonales.

Plus généralement, si $D \in \mathfrak{M}_n(\mathbb{K})$ est une matrice diagonale admettant n valeurs propres deux à deux distinctes, les matrices qui commutent à D sont les matrices diagonales. (Même démonstration!)

Si $M \in \mathfrak{M}_2(\mathbb{R})$ vérifie $M^3 - 2M = D$, alors M et D commutent (puisque toute matrice M commute à tout polynôme en M) et d'après la question précédente, M est une matrice diagonale :

$$M = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

L'équation $M^3 - 2M = D$ devient alors

$$\begin{pmatrix} \alpha^3 - 2\alpha & 0 \\ 0 & b^2 - 2b \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}.$$

D'après la première question, il y a trois possibilités pour α : 1, α et β et une seule pour b : 2. Les solutions sont donc

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} \alpha & 0 \\ 0 & 2 \end{pmatrix}, \quad \begin{pmatrix} \beta & 0 \\ 0 & 2 \end{pmatrix}.$$

La matrice A est triangulaire, donc ses coefficients diagonaux : -1 et 4 sont ses valeurs propres. En tant que matrice de $\mathfrak{M}_2(\mathbb{R})$ ayant deux valeurs

propres distinctes, elle est diagonalisable et semblable à la matrice D: il existe donc une matrice inversible P telle que $P^{-1}AP=D$.

La conjugaison étant un morphisme d'algèbres,

$$\begin{split} M^3-2M&=A\iff P^{-1}M^3P-2P^{-1}MP=P^{-1}AP\\ &\iff (P^{-1}MP)^3-2(P^{-1}MP)=D. \end{split}$$

On est donc ramené à l'équation précédente.

Il est clair que la matrice

$$P_0 = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$

convient (ses colonnes sont des vecteurs propres de A associés respectivement à -1 et à 4). Par conséquent, les solutions de $M^3-2M=A$ sont les matrices

$$P_0\begin{pmatrix}1&0\\0&2\end{pmatrix}P_0^{-1},\quad P_0\begin{pmatrix}\alpha&0\\0&2\end{pmatrix}P_0^{-1},\quad P_0\begin{pmatrix}\beta&0\\0&2\end{pmatrix}P_0^{-1}.$$