RMS 2021 [1371]

On définit la suite $(u_n)_{n\in\mathbb{N}}$ en posant $u_0=1$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = (n+1)u_n + (-1)^{n+1}.$$

On pose également

$$\forall \ n \in \mathbb{N}, \quad \nu_n = \frac{u_n}{n!}.$$

1 Exprimer v_{n+1} en fonction de v_n et de n.

En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ est convergente.

En déduire que la série $\sum v_n x^n$ converge pour tout $x \in [0, 1[$.

Pour quels $x \in \mathbb{R}$ la série $\sum u_n x^n$ est-elle convergente?

Salculer le rayon de convergence et la somme S de la série entière $\sum v_n x^n$.

1 № D'après la relation de récurrence liant u_n et u_{n+1} ,

$$\forall \; n \in \mathbb{N}, \quad \nu_{n+1} = \frac{(n+1)u_n}{(n+1)!} + \frac{(-1)^{n+1}}{(n+1)!} = \nu_n + \frac{(-1)^{n+1}}{(n+1)!}.$$

On peut aussi écrire cette relation sous la forme

$$\forall n \in \mathbb{N}, \quad v_{n+1} - v_n = \frac{(-1)^{n+1}}{(n+1)!}.$$

Or la suite de terme général $\frac{1}{(n+1)!}$ tend vers 0 en décroissant, ce qui permet d'appliquer le Critère spécial des séries alternées. Par conséquent, la série télescopique $\sum (\nu_{n+1} - \nu_n)$ est convergente, donc la suite $(\nu_n)_{n \in \mathbb{N}}$ est convergente.

Pour $0 \leqslant x < 1$, la série géométrique $\sum x^n$ est absolument convergente. Comme la suite $(\nu_n)_{n \in \mathbb{N}}$ est convergente, elle est en particulier bornée, donc

$$v_n x^n \underset{n \to +\infty}{=} \mathcal{O}(x^n)$$

et d'après le Théorème de comparaison, la série $\sum \nu_n x^n$ est absolument convergente et donc convergente.

4 On sait que

$$\forall x \in \mathbb{R}, \quad e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}.$$

Par télescopage,

$$\nu_n = \nu_0 + \sum_{k=0}^{n-1} (\nu_{k+1} - \nu_k) = 1 + \sum_{k=1}^n \frac{(-1)^k}{k!} = \sum_{k=0}^n \frac{(-1)^k}{k!}$$

donc la limite de la suite $(v_n)_{n\in\mathbb{N}}$ est égale à $e^{-1} > 0$.

Pour tout $x \in \mathbb{R}$ *non nul*, on en déduit que

$$u_n x^n \underset{n \to +\infty}{\sim} e^{-1} n! x^n \xrightarrow[n \to +\infty]{} \infty$$

Par croissances comparées de x^n et de n!, on en déduit que la série $\sum u_n x^n$ est grossièrement divergente.

La série $\sum u_n x^n$ converge donc si, et seulement si, x = 0.

On a démontré plus haut que la série $\sum v_n x^n$ était absolument convergente pour $0 \le x < 1$.

Pour x=1, la série $\sum v_n x^n$ est grossièrement divergente (puisque son terme général tend vers $e^{-1} \neq 0$).

Par conséquent, le rayon de convergence de la série entière $\sum \nu_n x^n$ est égal à 1.

Pour |x| < 1,

$$\begin{split} S(x) &= \sum_{n=0}^{+\infty} \nu_n x^n = 1 + \sum_{n=0}^{+\infty} \nu_{n+1} x^{n+1} \\ &= 1 + \sum_{n=0}^{+\infty} \nu_n x^{n+1} + \sum_{n=0}^{+\infty} \frac{(-1)^{n+1} x^{n+1}}{(n+1)!} \\ &= x \sum_{n=0}^{+\infty} \nu_n x^n + \left[1 + \sum_{n=0}^{+\infty} \frac{(-x)^{n+1}}{(n+1)!}\right] \\ &= x S(x) + exp(-x) \end{split}$$

donc

$$\forall x \in]-1, 1[, S(x) = \frac{e^{-x}}{1-x}.$$

On en déduit que $(1-x)S(x) = e^{-x}$ et donc que

$$\forall x \in]-1, 1[, (1-x)S'(x) - S(x) = -e^{-x}.$$

Mais on peut aussi vérifier que

$$\forall x \in]-1,1[, S'(x) = \frac{x}{1-x}S(x).$$

À quoi peuvent servir ces équations différentielles? Le calcul direct de S(x) les rend peu intéressantes...