1. Une fonction f de classe \mathscr{C}^2 est solution sur \mathbb{R}_+^* de

$$t^2x''(t) + 3tx'(t) + 4x(t) = t + 4$$

si, et seulement si, la fonction q définie par $g(s) = f(e^s)$ est une solution sur $\mathbb R$ de

$$y''(s) + 2y'(s) + 4y(s) = e^{s} + 4.$$

2. Les solutions f sont les fonctions de la forme

$$K_1\frac{\cos(\sqrt{3}\ln t)}{t} + K_2\frac{\sin(\sqrt{3}\ln t)}{t} + \Big(1 + \frac{t}{7}\Big).$$

- 1. Changement de variable
- La fonction [$s \mapsto e^s$] réalise une bijection de classe \mathscr{C}^2 de \mathbb{R} sur \mathbb{R}_+^* . Sa réciproque [$t \mapsto \ell n t$] est une fonction de classe \mathscr{C}^2 sur \mathbb{R}_+^* .
- Par conséquent, si f est de classe \mathscr{C}^2 sur \mathbb{R}_+^* , alors la composée g définie par

$$\mathbb{R} \longrightarrow \mathbb{R}_+^* \longrightarrow \mathbb{R}$$
$$s \longmapsto e^s \longmapsto f(e^s) = g(s)$$

est de classe \mathscr{C}^2 sur \mathbb{R} et, réciproquement, si g est de classe \mathscr{C}^2 sur \mathbb{R} , alors la composée f définie par

$$\begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} & \longrightarrow \mathbb{R} \\ t & \longmapsto \ell n \, t \longmapsto g(\ell n \, t) = f(t) \end{array}$$

est de classe \mathscr{C}^2 sur \mathbb{R}_+^* .

Si $g(s) = f(e^s)$ où f est de classe \mathscr{C}^2 , alors

$$\forall s \in \mathbb{R}, \quad g'(s) = e^s f'(e^s),$$
$$q''(s) = e^s f'(e^s) + e^{2s} f''(e^s)$$

si bien que, pour tout $s \in \mathbb{R}$,

$$g''(s) + 2g'(s) + 4g(s) = (e^s)^2 f''(e^s) + 3e^s f'(e^s) + 4f(e^s).$$

On en déduit que

$$\forall s \in \mathbb{R}, \quad g''(s) + 2g'(s) + 4g(s) = e^s + 4$$

si, et seulement si,

$$\forall s \in \mathbb{R}, (e^s)^2 f''(e^s) + 3e^s f'(e^s) + 4f(e^s) = e^s + 4.$$

Comme $[s \mapsto e^s = t]$ réalise une bijection de \mathbb{R} sur \mathbb{R}_+^* , cette dernière équation équivaut à

$$\forall t \in \mathbb{R}_{+}^{*}, \quad t^{2}f''(t) + 3tf'(t) + 4f(t) = t + 4.$$

2.

△ L'équation différentielle vérifiée par f est linéaire, mais on ne connaît pas de méthode simple pour la résoudre.

Au contraire, l'équation différentielle vérifiée par la fonction auxiliaire g est linéaire et à coefficients constants : on connaît donc une recette pour résoudre cette équation.

Résolution de l'équation auxiliaire

Les racines de l'équation caractéristique sont $-1 \pm i\sqrt{3}$, donc les solutions de l'équation homogène sont les fonctions de la forme

$$\forall \ s \in \mathbb{R}, \quad y_H(s) = e^{-s} (K_1 \cos \sqrt{3} s + K_2 \sin \sqrt{3} s).$$

Le second membre est la superposition d'une exponentielle et d'une constante.

Comme $[s \mapsto e^s]$ n'est pas une solution de l'équation homogène, on sait qu'il existe une solution particulière de

$$y''(s) + 2y'(s) + 4y(s) = e^{s}$$

de la forme $y_1(s) = \lambda e^s$. En substituant, on trouve $\lambda = 1/7$.

De même, comme $[s\mapsto 4]$ n'est pas une solution de l'équation homogène, on sait qu'il existe une solution particulière de

$$y''(s) + 2y'(s) + 4y(s) = 4$$

de la forme $y_2(s) = \mu$. En substituant, on trouve $\mu = 1$.

D'après le principe de superposition, une fonction y est solution de l'équation complète

$$y''(s) + 2y'(s) + 4y(s) = e^{s} + 4$$

si, et seulement si, il existe deux constantes K1 et K2 telles que

$$\begin{split} \forall \; s \in \mathbb{R}, \quad y(s) &= y_H(s) + y_1(s) + y_2(s) \\ &= e^{-s} (K_1 \cos \sqrt{3} s + K_2 \sin \sqrt{3} s) + \frac{e^s}{7} + 1. \end{split}$$

Résolution

D'après la première partie, une fonction f est solution de l'équation

$$\forall t > 0, \quad t^2 x''(t) + 3tx'(t) + 4x(t) = t + 4$$
 (*)

si, et seulement si, la fonction $g = [s \mapsto f(e^s)]$ est une solution de l'équation auxiliaire.

 \bullet On en déduit que f est solution de (\star) si, et seulement si, il existe deux constantes K_1 et K_2 telles que

$$\begin{split} \forall \; t>0, \quad f(t) &= y(\ell n \, t) \\ &= e^{-\,\ell n \, t} \big[K_1 \cos(\sqrt{3}\,\ell n \, t) + K_2 \sin(\sqrt{3}\,\ell n \, t) \big] + \frac{e^s}{7} + 1 \\ &= K_1 \frac{\cos(\sqrt{3}\,\ell n \, t)}{t} + K_2 \frac{\sin(\sqrt{3}\,\ell n \, t)}{t} + \frac{t}{7} + 1. \end{split}$$