Développer

$$f(x) = \frac{\ell n(1+3x)}{\sin 5x}$$

au voisinage de 0 à $\mathcal{O}(x^4)$ près.

Développement de paresseux

La fonction f est de classe \mathscr{C}^{∞} sur un voisinage de l'origine, donc la formule de Taylor nous assure qu'elle admet un développement limité à $\wp(x^d)$ près, quel que soit l'entier $d \in \mathbb{N}$. En particulier,

$$f(x) = \cdots + \frac{f^{(4)}(0)}{4!}x^4 + o(x^4)$$

et en factorisant les deux derniers termes

$$\frac{f^{(4)}(0)}{4!}x^4 + o(x^4) = x^4 \left(\frac{f^{(4)}(0)}{4!} + o(1)\right) = x^4 \times \mathcal{O}(1) = \mathcal{O}(x^4).$$

∠ Un terme o(1) est une quantité **qui tend vers** 0 (c'est un "infiniment petit") et un terme O(1) est une quantité **bornée**.

Dans la parenthèse ci-dessus, on a donc la somme d'une constante et d'une quantité qui tend vers 0 (le o(1)). Cette expression tend donc vers une limite finie et est en particulier bornée (d'où le O(1)).

On peut donc obtenir un développement limité de la forme

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \mathcal{O}(x^4),$$

plus précis que le développement limité traditionnel

$$f(x) = \underset{x\to 0}{=} \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + o(x^3)$$

mais sans faire aucun calcul supplémentaire : un vrai truc de paresseux!

Analyse de la fonction

On connaît les développements du numérateur et du dénominateur à tous les ordres et le premier terme de chacun de ces développements est proportionnel à x, donc f(x) est un produit :

$$f(x) = \frac{x + \dots + \mathcal{O}(x^m)}{x + \dots + \mathcal{O}(x^n)} = \left(1 + \dots + \mathcal{O}(x^{m-1})\right) \cdot \frac{1}{1 + \dots + \mathcal{O}(x^{n-1})}.$$
 (1)

Admettons qu'on puisse obtenir un développement du second facteur de (1) à $\mathcal{O}(x^p)$ près, si bien que

$$f(x) = (1 + \dots + \mathcal{O}(x^{m-1})) \cdot (1 + \dots + \mathcal{O}(x^p)). \tag{2}$$

Pour obtenir un résultat à $\mathcal{O}(x^4)$ en développant ce produit, il faut (et il suffit) que $\mathcal{O}(x^{m-1}) = \mathcal{O}(x^4)$ et $\mathcal{O}(x^p) = \mathcal{O}(x^4)$, c'est-à-dire m = 5 et p = 4.

Le second facteur de (1) est de la forme

$$(1 + o(1))^{\alpha}$$
 avec $\alpha = -1$

et, d'après le développement limité de sin, le dénominateur est en fait de la forme

$$1-x^2+\cdots+\mathcal{O}(x^{n-1})$$

donc on va poser

$$u = x^2 + \dots + \mathcal{O}(x^{n-1}) \tag{3}$$

dans le développement limité

$$\frac{1}{1 - u} = 1 + u + \dots + \mathcal{O}(u^{q}). \tag{4}$$

D'après (3), l'infiniment petit u est connu à $\mathcal{O}(x^{n-1})$ près et $u = \mathcal{O}(x^2)$, donc $\mathcal{O}(u^q) = \mathcal{O}(x^{2q})$ (quel que soit l'entier q choisi).

Par conséquent, le développement (4) est connu à $\mathcal{O}(x^4)$ près (puisqu'il nous faut p=4) si, et seulement si, $\mathcal{O}(x^{n-1}) = \mathcal{O}(x^4)$ et $\mathcal{O}(x^{2q}) = \mathcal{O}(x^4)$, c'est-à-dire n=5 et q=2.

Au terme de ce raisonnement sur les ordres de grandeur, on sait exactement quels développements limités il faut calculer pour obtenir le résultat avec la précision voulue, sans calcul superflu.

Calcul du développement limité

D'après les formules du cours, lorsque x tend vers 0, avec m = n = 5,

$$\ell n(1+3x) = 3x - \frac{(3x)^2}{2} + \frac{(3x)^3}{3} - \frac{(3x)^4}{4} + \mathcal{O}(x^5)$$

$$= 3x \left[1 - \frac{3x}{2} + 3x^2 - \frac{27x^3}{4} + \mathcal{O}(x^4) \right]$$

$$\sin 5x = 5x - \frac{(5x)^3}{6} + \mathcal{O}(x^5)$$

$$= 5x \left[1 - \frac{25x^2}{6} + \mathcal{O}(x^4) \right].$$

On en déduit que

$$f(x) \underset{x \to 0}{=} \frac{3}{5} \cdot \frac{1 - 3x/2 + 3x^2 - 27x^3/4 + \mathcal{O}(x^4)}{1 - 25x^2/6 + \mathcal{O}(x^4)}$$

Comme (avec q = 2)

$$\frac{1}{1-u} = 1 + u + O(u^2),$$

alors

$$\frac{1}{1 - 25x^2/6 + \mathcal{O}(x^4)} = 1 + \frac{25x^2}{6} + \mathcal{O}(x^4)$$

et finalement

$$\begin{split} f(x) &\underset{x \to 0}{=} \frac{3}{5} \Big(1 - \frac{3x}{2} + 3x^2 - \frac{27x^3}{4} + \mathcal{O}(x^4) \Big) \Big(1 + \frac{25x^2}{6} + \mathcal{O}(x^4) \Big) \\ &= \frac{3}{5} \Big[1 - \frac{3x}{2} + \Big(3 + \frac{25}{6} \Big) x^2 - \Big(\frac{25}{4} + \frac{27}{4} \Big) x^3 + \mathcal{O}(x^4) \Big] \\ &= \frac{3}{5} - \frac{9x}{10} + \frac{43x^2}{10} - \frac{39x^3}{5} + \mathcal{O}(x^4). \end{split}$$