Soit E, *un espace vectoriel normé par* $\|\cdot\|$.

1. Un sous-espace vectoriel F qui contient une boule ouverte $B_o(x_0, r)$ contient aussi la boule ouverte $B_o(0_E, r)$.

2. L'intérieur d'un sous-espace vectoriel strict de E est vide.

1. Supposons que la boule ouverte $B_o(x_0, r)$ soit contenue dans F:

$$\forall x \in E$$
, $||x - x_0|| < r \implies x \in F$.

Considérons maintenant un vecteur y de la boule ouverte centrée à l'origine $B_o(0_E,r)$: comme $\|y\|< r$, alors

$$||(x_0 + y) - x_0|| = ||y|| < r$$

donc $x_0+y\in B_o(x_0,r)\subset F$. Comme F est un sous-espace vectoriel, il est stable par combinaison linéaire et donc

$$y = \underbrace{(x_0 + y)}_{\in F} - \underbrace{x_0}_{\in F} \in F.$$

Par conséquent, la boule ouverte $B_o(\mathfrak{d}_E, r)$ est contenue dans F.

2. Soit F, un sous-espace vectoriel strict de E : on a donc $F \subseteq E$.

Supposons que l'intérieur de F ne soit pas vide. Il existe alors un vecteur x_0 dans l'intérieur de F et, par définition de l'intérieur, il existe un réel r > 0 tel que la boule ouverte $B_o(x_0, r)$ soit contenue dans F.

D'après la question précédente, la boule ouverte $B_o(\mathfrak{O}_E, r)$ est contenue dans F.

Le vecteur nul 0_E appartient à F (puisque F est un sous-espace vectoriel de E).

Si $x \in E$ n'est pas le vecteur nul, alors

$$x = \frac{2\|x\|}{r} \cdot \left(\frac{r}{2\|x\|} \cdot x\right).$$

La norme du vecteur $(r/2||x||) \cdot x$ est égale à r/2 < r, donc ce vecteur appartient à F et comme F est un sous-espace vectoriel, $x \in F$.

u Un sous-espace vectoriel est stable par combinaison linéaire. En particulier, si $u \in F$, alors $\lambda \cdot u \in F$ pour tout scalaire λ .

On a ainsi démontré que tout vecteur $x \in E$, nul ou non nul, appartenait à F, donc F = E.