Séries numériques (A) - mai 2020

	1
	uand on applique le théorème de comparaison, or mpare
	les termes généraux
	les sommes partielles
	les restes
	les sommes
	2
	$u_n \underset{n \to +\infty}{\sim} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ son même nature.
	O Vrai O Faux
	3
Si	$u_n \underset{n \to +\infty}{\sim} v_n$ et si $u_n \leqslant 0$ pour tout $n \in \mathbb{N}$, alor
	s séries $\sum_{n=1}^{\infty} u_n$ et $\sum_{n=1}^{\infty} v_n$ sont de même nature.
	O Vrai O Faux
_	
	4
Si	$u_n \underset{n \to +\infty}{\sim} v_n \text{ et si}$
	$\forall\;n\in\mathbb{N}, u_n\geqslant 0 et v_n\geqslant 0,$
alc	ors
	$\sum_{n=0}^{N} u_n \underset{N \to +\infty}{\sim} \sum_{n=0}^{N} v_n.$
	$\sum_{n=0}^{\infty} N \to +\infty \sum_{n=0}^{\infty} N $
	O Vrai O Faux
	5
Si	$u_n \underset{n \to +\infty}{\sim} v_n$ et si les u_n et les v_n sont tous de
	ême signe, alors les séries $\sum u_n$ et $\sum v_n$ sont de
	ême nature
	O Vrai O Faux
et	de plus $+\infty$ $+\infty$
	$\sum_{n=0}^{+\infty} u_n \underset{n \to +\infty}{\sim} \sum_{n=0}^{+\infty} \nu_n.$

O Faux

O Vrai

6
Si $u_n = \mathcal{O}(\nu_n)$ et si la série $\sum \nu_n$ converge, alors la série $\sum u_n$ converge.
O Vrai O Faux
7
Si $u_n=\mathcal{O}(\nu_n)$, si $\nu_n>0$ pour tout $n\in\mathbb{N}$ et si $\sum \nu_n$ converge, alors la série $\sum u_n$ converge.
O Vrai O Faux
La série $\sum u_n$ est même absolument convergente. \Box Oui
☐ Non, bien qu'elle soit convergente
☐ Non, puisqu'elle n'est pas convergente
a Non, puisqu'ene n'est pas convergente
8
Si $u_n = o(v_n)$, si $u_n > 0$ pour tout $n \in \mathbb{N}$ et si $\sum v_n$ converge, alors la série $\sum u_n$ converge.
O Vrai O Faux La série $\sum u_n$ est même absolument convergente.
☐ Oui
☐ Non, bien qu'elle soit convergente
☐ Non, puisqu'elle n'est pas convergente
9
Si la série $\sum u_n$ converge et si $u_n\leqslant 0$ pour tout $n\in\mathbb{N}$, alors la série $\sum u_n$ converge absolument.
O Vrai O Faux
10
Si la série $\sum u_n$ diverge et si $u_n \underset{n \to +\infty}{\sim} v_n$, alors la
série $\sum v_n$ diverge.
O Vrai O Faux
La série $\sum \nu_n$ n'est pas absolument convergente.
☐ Bien sûr, puisqu'elle diverge!
☐ Oui, même si elle converge!
☐ Mais non, puisqu'elle converge!

S'il existe une constante K>0 et si

$$u_n \underset{n \to +\infty}{\sim} \frac{K}{n^{\alpha}},$$

alors la série $\sum u_n$ diverge si, et seulement si,

- \square $\alpha \leqslant 1$
- \Box $\alpha < 1$
- - 12

S'il existe r > 0 et K > 0 tels que

$$u_n \underset{n \to +\infty}{\sim} K.r^n$$

alors la série $\sum u_n$ converge si, et seulement si,

- \Box r > 1
- □ r ≥ 1
- \Box r < 1
- \Box $r \leqslant 1$

13

Si $\mathfrak{u}_n \underset{n \to +\infty}{=} \wp(\sqrt[1]{n^{\alpha}})$, alors la série $\sum \mathfrak{u}_n$ converge absolument

- \Box pour tout $\alpha > 1$
- \Box pour tout $\alpha \geqslant 1$
- \Box pour tout $\alpha < 1$
- \Box pour tout $\alpha \leq 1$

14

S'il existe r>0 tel que $\mathfrak{u}_n \underset{n\to +\infty}{=} \mathcal{O}(r^n)$, alors la série $\sum \mathfrak{u}_n$ converge absolument

- \Box pour tout r < 1
- \Box pour tout r > 1
- \Box si, et seulement si, r < 1
- \Box si, et seulement si, r > 1