TP 3

Dans ce TP nous allons travailler la programmation dynamique, illustrée par trois algorithmes classiques :
Le probléme du sac a& dos-La plus longue sous suite croissante- Algorithme de Floyd Warshall.

1 Echauffement le sac a dos

En adaptant le programme sur le rendu de monnaie, nous allons nous intéresser au probleme dit du sac a
dos.
Soit ' un ensemble de n éléments a ranger dans un sac a dos de capacité maximale W (son volume ou son
poids) ; chaque élément e a une valeur v (on les numérote de 1 a n), chaque élément a un poids w (on les
numérote de 1 an).

On cherche a trouver un sous-ensemble F' C E tel que :

— La somme des poids des éléments dans F' ne dépasse pas la capacité W.

— La somme des valeurs des éléments de F' est maximale (E v(e)).
eclF
On souhaite donc une valeur maximum sans dépasser le poids maximum autorisé.

La programmation dynamique permet de scinder les entrées du probléme en autant de sous-ensemble que
nécessaire. Le probléme est résolu pour chacun des sous-ensembles en utilisant les solutions précédentes pour
calculer la valeur du sous-ensemble courant. Il faut cependant qu’il n’y ait qu'un nombre polynomial de sous-
problemes.

w et u deux dictionnaires contenant , le poids et les valeurs de chaque objet.

Opt(i, j) la valeur optimal de poids maximum j constituer a partir des éléments de 1 a i.

Nous pouvons établir la relation de récurrence.

Opt(i,j) =0 sii=0

Opt (i, j)=0pt(i-1,3j) stw; >jetj < W

Opt(i,j) = max(0Opt(i-1,j),v; +0pt(i — 1,5 — w;) sinon
Exercice 1.1 1. Interpréter cette relation de récurrence

2. On propose une programmation de type dynamique, qui va calculer la solution aux sous-probléemes une
seule fois et le mémoriser dans une table pour que ce calcul puisse étre réutilisé, en adaptant [’algorithme
sutvant :

Etape 1 : On construit un tableau V de n + 1 lignes et Poids + 1 colonnes. Pour 1 < i < n et
0 < j < Poids, la case V[i][5] va mémoriser la valeur maximale des sous-ensembles de taille
au plus i. Si on arrive & calculer toutes les cases de ce tableau, la case V[n J[Poids] contiendra
la valeur mazimale des éléments qui peuvent étre rangés dans le sac a dos, i.e. la solution d notre
probléme.

Etape 2 : On construit par récurrence la valeur d’une solution optimale en termes de solutions d des
sous-problémes :

Initialisation : On pose : V[0, 5] = 0pourQ) < j < Poids (on n’a pas gardé d’élément) V[<i][0] =
0 pour j <0 (entrée interdite)

Récursion : On utilise pour 1 <i<mn, 0<j < Poids
V[i][7] = max(V[i - 1][5],v_% + V[i-1][5 ~w_<])

Etape 3 : On calcule les valeurs de V[i] [7] de fagon itérative en partant de l'initialisation de V
(cf. étape la valeur optimale.

2 LA PLUS LONGUE SOUS SUITE CROISSANTE

Programmer une fonction sacados (v,w,Poids) prenant comme parametres deux dictionnaires v et w,
respectivement, la liste des valeurs des objets et celle des poids, Poids étant le poids maximum autorisé.
La fonction devra renvoyer la valeur mazimum autorisée du sac a dos.

def sacados (v,w,Poids):
"ty la liste des wvaleurs des objets,w celle des poids,

Poids le poids maxzimum autorise"""

n=len (v)

V=np.zeros ((n+1,Poids+1)) # intialisation de V

return V[n][Poids]

3. Modifier le programme afin qu’il renvoie le contenu du sac d dos :

def sad(v,w,Poids):
n=len (v)
V=np.zeros ((n+1,Poids+1))
memo=np . zeros ((n+1,Poids+1))
elements=[]
for % in range(1,n+1):
for j 4n range (Poids+1):
if ((wlil<= j)
and (v[i]+V[i-1][j-w[<]]>V[i-1][35])):
Vil [jl=v[i]+V[i-1][5-w[i]]
memo [1] [j]=1
else:
VIi][5]=V[i-1][j]
memo [1] [5]=0

return (V[nJ][Poids],element)

2 La plus longue sous suite croissante

La recherche d’une plus longue sous-suite strictement croissante dans une suite finie est un probléme clas-
sique en algorithmique. Ce probléme peut étre résolu en temps O(nlogn) avec n la longueur de la suite.

L’entrée du probleme est une suite finie x1,...,x,. L’objectif est de trouver une sous-suite strictement
croissante de la suite , pour la plus grande longueur L possible, c-a-d compsée du plus grand nombre possible
de termes .

Par exemple, la suite (6,1,4,9,5,11) possede des sous-suites strictement croissantes de longueur 4, mais
aucune de longueur 5. Une plus longue sous- suite strictement croissante est (1,4,9,11), obtenue en prenant
les éléments en position 2, 3,4 et 6 de la suite initiale. En général, la solution n’est pas unique. Ici, une autre
solution est (1,4,5,11).

Le principe géneral est le suivant :

On recherche une plus grande sous suite des n premier termes Xn = [X,..., X,], a partir de celles extraites
de X(n—1) = [X1,...Xn—1] (notre sous probléme), en s’interessant aux sous suites de X (n—1) dont le dernier
terme est le plus petit possible. On cherche parmi ces sous suites, la plus grande des sous suites auxquelles on
peut ajouter le terme X, ou non et construire ainsi une nouvelles sous suite croissante dont le dernier terme
est minimal.

Par exemple :

X =1[1,2,4,3,5,4,6]

X est le minimum donc M[1] =1, c-a-d M = [0,1,0,0,0,0,0,0].
On travaille ensuite sur X (2) = [1,2], comme X2 > X[y, alors M devient :

M =0,1,2,0,0,0,0,0]

Lycée J Decour 2 IPT Spé

2 LA PLUS LONGUE SOUS SUITE CROISSANTE

Puis on travaille sur X (3) = [1,2,4], on constate que X,/9) < X3 qui transforme M en : :
M =10,1,2,3,0,0,0,0]

Puis avec X(4) = [1,2,4,3] on obtient qu’au mieux, X9 < X4 qui modifie M car on a une sous suite
croissante de 3 termes dont le dernier terme X est inférieur a Xp3) ¢

M =10,1,2,4,0,0,0,0]
successivement on obtient pour M :

[0,1,2,4,5,0,0,0]
(0,1,2,4,6,0,0,0]
[0,1,2,4,6,7,0,0]

Donc la plus grande sous suite croissante sera composée de 5 termes, se terminant par X7.

Exercice 2.1 Dans la suite M, X, P sont des listes L un entier.

1. Soit X une liste den entiers, M une liste de L+1 < n+1 entiers distincts tel que X[M[1]-1],...X[M[L]-1]
définissent une suite croissante. Programmer une fonction recherche_dich(X,M, 1) renvoyant le plus
grand entier 1 < j < L vérifiant X[M|[j] — 1] < X[i — 1], s’il existe, 0 sinon, en utilisant le principe de
recherche dichotomique dans un tableau trié.

def recherche_dich (X,M,4):
mnwn - X et M des listes X[M[1]-1],...,X[M[-1]-1]croissante"""
assert M[0]==0 and 4i<len(X)+1 and len(M)<=len(X)+1
L=len (M) -1
s=1
if X[M[s]-1]>=X[t1-1]:
return 0
of K[M[L]-1]<X[i-1]:

return L

whtle s<L-1:

return s

2. Nous allons construire un algorithme dynamique, en recherchant les solutions au sous probléme associé
a la sous suite X1,...,X;.

X la liste de n entiers, M=[0]*(n+1) et P=[0]*n deux listes qui seront compléter pour contenir pour
M[i], Uindice k tel que X[k—-1] soit la plus petite valeur possible du dernier élément d’une sous suite
strictement croissante d’exactement i éléments; P[k] l’indice du terme précédant de cetle sous suite
optimale.

Soit L le plus petit entier vérifiant M[L]==n. Justifier que la liste X[M[1]-1],...,X[M[L]-1 est crois-
sante et que les M[%] sont distincts pour i € {1,...,L}.

3. La relation de recurrence sur M et P est la suivante :
— Initialement M[1]=1.
— L le nombre de terme de la plus grande sous suite croissante connue, initialement L = 1.
— Pour chaque i de 2 a n :
— on recherche le plus grand j € [|1, L|] tel que X[M[j]-1]<X[i-1]
— SVl existe Pli-1]=M][j] et M[j+1]=i
— L=max(L,j+1)
Programmer la fonction renvoyant L

Lycée J Decour 3 IPT Spé

3 POUR LES g : CORRECTION A L’AIDE DE L’ALGORITHME DE VITERBI, D’APRES MINES
PONT 2024

def PGSSDynamique (X,M,P):
L=0
m=X[0]
n=len (X)
M[1]=1
L=1

for i in range(2,n+1):

j=recherche_dich (X,M[:L+1], <)
return L
def Plusgrandesoussuite (X):
n=len (X)
M=[0]*(n+1)
P=[0]*(n+1)
return PGSSDynamique (X,M,P)

4. Programmer la fonction renvoyant L et une sous suite de taille L croissante maximale (on utilisera P)
pour la reconstituer.

def Plusgrandesoussuite (X):
n=len (X)
M=[0]*(n+1)
P=[0]*(n+1)
L=PGSSDynamique (X,M, P)
j=M[L]
u=[X[5-1]]

return u

5. Nous allons finalement adapter ce programmer pour rechercher la plus grande sous sécance commune
entre deux chaines (ici deuz suites numérique)
Le probléme de la plus longue sous-suite commune a deux suites S[0], S[1],..., S[n-1] et T[0],
T[1], ..., T[m-1] peut étre réduit au probléme de la plus longue sous-suite croissante.
Pour cela, on note Alz] la liste des indices des éléments de S valant x par ordre décroissant. Si i[1], i[2],
..., 1[k] est une plus longue sous-suite strictement croissante de la suite obtenue en concaténant A[T[0]],

., A[T[m-17], alors S[i[0]], ..., S[i[k-1]] est une plus longue sous-suite commune a S et T.

La taille de la suite obtenue par concaténation est au plus nm, mais seulement m si la premiére suite ne
contient pas d’élément en double. Ainsi, la réduction donne une méthode de résolution du probléme de
la plus longue sous-suite commune relativement efficace dans des cas particuliers courants . En appelant
les programmes précédants, proposer une fonction prenant comme parameétres deuz listes et renvoyant
une des plus grande sous sécances commune aux deur suites. Les listes S et T seront des listes d’entiers
pas forcément distincts.

3 Pour les % : Correction a l'aide de algorithme de Viterbi, d’apres Mines Pont
2024

Un message " d’origine" , codé sur K caractéres assimilés pour I'exercice a des nombres entiers de 0 & K —1,
de longueur N, sera représenter comme une liste de longueur N composé de N entiers entre 0 et K — 1. Ce
message est transmit et modifier par des erreurs, ce nouveau message sera le message observé, qui sera toujours
une liste de longueur N d’entiers entre 0 et K — 1. Le but est de retrouver le message d’origine en corrigeant (
le mieux possible) les erreurs.

Lycée J Decour 4 IPT Spé

4 L’ALGORITHME DE FLOYD WARSHALL.

Exercice 3.1 On connait en partie le risque d’erreur stocké dans deuz tableaur ou matrices de probabilité de

taille K x K, P et E. E; j est la probabilité d’observer le symbol i sachant que le symbol j a été émis. P; ; est la

probabilité que le symbole j soit présent dans le message initial sachant que i le précéde dans ce méme message

(qui vient du fait que dans la langue francaise par exemple certaines syllabes sont plus probable que d’autres).
On se donne un message observé obs de N entiers obs[i]€ [|0, K — 1|] pouri € [|0, K — 1|].

1.

2.

3.

On propose une premiere approche Gloutone.

On définit alors un graphe G orienté et pondéré, représentant tous les messages initiauz, possible (
connaissant le message observé obs). Le graphe G est constitué d’un premier noeud initial, une racine
arbitraire v, relier a K noeuds So ; indiquant les symboles j possible du premier symbole du message
initial. Chacune des arrétes est pondérée par Elobs[0], j]. Les noeuds S; j, suivant, indiqueront que le i
eme symbol du message initiale est la lettre j.

On construit finalement le graphe de tel sorte que :

Chaque noeuds S; j admetent comme noeuds adjacents supérieur les K — 1 noeuds Sii1 1, pondéré par
P; 1 Eops[i+1],k (probabilité que le i + 1 éme symbole soit k sachant que le précédant était j et que celui
observé est obs[i+1]).

Un chemin sera donc un message initial possible et le produit des pondérations la probabilité qu’il soit

effectivement ce message.

(a) Programmer une fonction Graphe(obs,P,E) renvoyant le dictionnaire de la liste d’adjacence du
graphe G, constituer pour la clé u = (i,k) (i éme lettre de cqrctére k du noeud i) de la liste des
couple [(j, k),pjr] ot (j, k) est le noeud et p; i la pondération.

(b) On testera le programme dans le cas K =3, N =8 et

0.3 0.2 0.5 0.7 0.2 0.3
P=1]04 04 02 |, E=| 02 07 01
0.2 03 0.5 0.1 0.1 0.6

(¢) Proposer une fonction glouton(G,obs) renvoyant le message initiale en utilisant un algorithme
glouton. On rappelle qu’un algorithme glouton consiste a chaque étape de faire le choix localement
optimal. Ainsi si on se trouve au sommet S;; on choisira Uarréte la plus probable.

On remarquera que l’algorithme consiste a trouver un chemin optimum, qui pourrait se résoudre avec
lalgorithme Dijstra. On propose ici une approche dynamique.

On pose T' la matrice des T; j la valeur de probabilité mazimum entre la racine et le noeud S; ; :

{ Ti,j = maxge(o, kK —1|] (Tk,jq X P X Eobs[j},i) si. N—1>j>0
Ti0 = Eops[o],i

Compléter le programme suivant :

def Viterbi (obs,P,E,K,N):
T=[[0 for j in range(N)] for % in range (K)]
for i in range (K):
T[i][0]=E[obs[0]][%]

Proposer une fonction renvoyant le message initial.

4 L’algorithme de Floyd Warshall.

En informatique, ’algorithme de Floyd-Warshall est un algorithme pour déterminer les distances des plus
courts chemins entre toutes les paires de sommets dans un graphe orienté et pondéré, en temps cubique au

nombre de sommets.

T T vvvn =4 TDT Q.. 2

4 L’ALGORITHME DE FLOYD WARSHALL.

L’algorithme de Floyd-Warshall prend en entrée un graphe orienté et valué, décrit par une matrice d’ad-
jacence donnant le poids d’un arc lorsqu’il existe et la valeur 400 sinon. Le poids d’un chemin entre deux
sommets est la somme des poids sur les arcs constituant ce chemin. Les arcs du graphe peuvent avoir des poids
négatifs, mais le graphe ne doit pas posséder de cycle de poids strictement négatif. L’algorithme calcule, pour
chaque paire de sommets, le poids minimal parmi tous les chemins entre ces deux sommets.

On suppose que les sommets de G sont {1,2,3,4,...,n}. Il résout successivement les sous-problémes suivants :

Wzkj est le poids minimal d’'un chemin du sommet ¢ au sommet j n’empruntant que des sommets intermé-
diaires dans {1,2,3,...,k} s'il en existe un, et 400 sinon. On note W* le tableau des ij Pour k = 0, W°
est la matrice d’adjacence définissant G. Maintenant, pour trouver une relation de récurrence, on considére un
chemin p entre i et j de poids minimal dont les sommets intermédiaires sont dans {1, 2,3, ..., k}. De deux choses
I'une :

— soit p n’emprunte pas le sommet k;

— soit p emprunte exactement une fois le sommet k (car les circuits sont de poids positifs ou nuls) et p
est donc la concaténation de deux chemins, entre ¢ et k et k et j respectivement, dont les sommets
intermédiaires sont dans {1,2,3,...,k — 1}.

L’observation ci-dessus donne la relation de récurrence :

Wk, = i Wkt wk-l 4wkl
5= et Wi+ W)

pour tous 4, j etk dans {1,2,3,4...,n}. Ainsi on résout les sous-problémes par valeur de k croissante.

Exercice 4.1 On supposera que le graphe G, nous est donné sous la forme d’une liste d’ajacence stocker dans
un dictionnaire G, ot G[4i] renvoie la liste des uplets (vj,p;) de telle sorte que p; soit le poids (relatif de
larrete de u; vers vj.

1. Programmer une fonction Adj(G) retournant sous forme de tableau, la matrice d’ajacence évoquée ci-
dessus et prenant comme parameétre le dictionnaire G de la liste d’ajacence du graphe (on prendra garde
au fait que la ligne i = 0 est la premiére ligne).

2. Proposez une fonction cycle(4), renvoyant true si la matrice d’ajdacence n’a aucun cocycle de longueur
1 de poids négatif et False sinon.

3. Programmer une fonction FW(A4,k) prenant comme parameétre le tableau A de la matrice d’adjacence et
renvoyant W¥ et s’arréte si le graphe pocéde un cocycle de poids négatif.

4. Terminer le programme de la fonction FloydWarshall (G) renvoyant la distance du plus cours chemin.

T «vrnen T T vvan ral TDT Q.. 2

