
TP 3

Dans ce TP nous allons travailler la programmation dynamique, illustrée par trois algorithmes classiques :
Le problème du sac à dos-La plus longue sous suite croissante– Algorithme de Floyd Warshall.

1 Echauffement le sac à dos
En adaptant le programme sur le rendu de monnaie, nous allons nous interesser au problème dit du sac à

dos.
Soit E un ensemble de n éléments à ranger dans un sac à dos de capacité maximale W (son volume) ; chaque
élément e a une valeur v (on les numérote de 1 à n), chaque élément a un poids w (on les numérote de 1 à n).

On cherche à trouver un sous-ensemble F ⊂ E tel que :
— La somme des poids des éléments dans F ne dépasse pas la capacité W .
— La somme des valeurs des éléments de F est maximale (

∑
e∈F

v(e)).

On souhaite donc une valeur maximum sans dépasser le poids maximum autorisé.
La programmation dynamique permet de scinder les entrées du problème en autant de sous-ensemble que

nécessaire. Le problème est résolu pour chacun des sous-ensembles en utilisant les solutions précédentes pour
calculer la valeur du sous-ensemble courant. Il faut cependant qu’il n’y ait qu’un nombre polynomial de sous-
problèmes.

w et u deux dictionnaires contenant , le poids et les valeurs de chaque objet.
Opt(i, j) la valeur optimal de poids maximum j constituer à partir des éléments de 1 à i.
Nous pouvons établir la relation de récurrence.

Opt(i,j) = 0 si i = 0
Opt(i,j)=Opt(i-1,j) si wi > j et j ≤ W
Opt(i,j) = max(Opt(i-1,j), vi + Opt(i − 1, j − wi) sinon

Exercice 1.1 1. Interpréter cette relation de récurrence
2. On propose une programmation de type dynamique, qui va calculer la solution aux sous-problèmes une

seule fois et le mémoriser dans une table pour que ce calcul puisse être réutilisé, en adaptant l’algorithme
suivant :
Etape 1 : On construit un tableau V de n + 1 lignes et Poids + 1 colonnes. Pour 1 ≤ i ≤ n et

0 ≤ j ≤ Poids, la case V[i][j] va mémoriser la valeur maximale des sous-ensembles de taille
au plus i. Si on arrive à calculer toutes les cases de ce tableau, la case V[n][Poids] contiendra
la valeur maximale des éléments qui peuvent être rangés dans le sac à dos, i.e. la solution à notre
problème.

Etape 2 : On construit par récurrence la valeur d’une solution optimale en termes de solutions à des
sous-problèmes :
Initialisation : On pose : V[0, j] = 0 pour0 ≤ j ≤ poids (on n’a pas gardé d’élément) V[i][j] =

−∞ pour j < 0 (entrée interdite)
Récursion : On utilise pour 1 ≤ i ≤ n , 0 ≤ j ≤ W

V[i][j] = max(V[i - 1][j],v_i + V[i-1][j -w_i])

Etape 3 : On calcule les valeurs de V[i][j] de façon itérative en partant de l’initialisation de V
(cf. étape la valeur optimale.

1

2 LA PLUS LONGUE SOUS SUITE CROISSANTE

Programmer une fonction sacados(v,w,Poids) prenant comme paramètre deux listes v et w, res-
pectivement, la liste des valeurs des objets et elle des poids, Poids étant le poids maximum autorisé. La
fonction devra renvoyer la valeur maximum autorisée.

def sacados (v,w,n,Poids):
. """ v la liste des valeurs des objets ,w celle des poids , Poids le poids maximum autorise """

n=len(v)
V=[x[:] for x in [[0]*(Poids +1)] * (n+1)] # intialisation de V
ou aussi V=np.zeros ((n+1, Poids))
for i in range (1,n+1):

for j in range(Poids +1):
if w[i]<=j: # on ajoute l’element i

V[i][j]= max(V[i -1][j],v[i]+V[i -1][j-w[i]])
else: # l’element i n’est pas ajoute

V[i][j]=V[i -1][j]
return V[n][Poids]

3. Modifier le programme afin qu’il renvoie le contenu du sac à dos :

def sad(v,w,Poids):
n=len(n)

V=[x[:] for x in [[0]*(Poids +1)] * (n+1)]
memo =[x[:] for x in [[0]*(Poids +1)] * (n+1)]
Mais aussi
#V,memo=np.zeros ((n+1, Poids)),np.zeros ((n+1, Poids))
elements =[]

for i in range (1,n+1):
for j in range(Poids +1):

if ((w[i]<= j) and (v[i]+V[i -1][j-w[i]]>V[i -1][j])):
V[i][j]=v[i]+V[i -1][j-w[i]]
memo[i][j]=1

else:
V[i][j]=V[i -1][j]
memo[i][j]=0

K=Poids
for i in range(n ,0 , -1):

if memo[i][K]==1:
elements . append (i)
K=K-w[i -1]

return (V[n][Poids],elements , Matrix (memo), Matrix (V))

2 La plus longue sous suite croissante
La recherche d’une plus longue sous-suite strictement croissante dans une suite finie est un problème clas-

sique en algorithmique. Ce problème peut être résolu en temps O(n log n) avec n la longueur de la suite.
L’entrée du problème est une suite finie x1, . . . , xn. L’objectif est de trouver une sous-suite strictement

croissante de la suite , pour la plus grande longueur L possible, c-a-d compsée du plus grand nombre possible
de termes .

Par exemple, la suite (6, 1, 4, 9, 5, 11) possède des sous-suites strictement croissantes de longueur 4, mais
aucune de longueur 5. Une plus longue sous- suite strictement croissante est (1, 4, 9, 11), obtenue en prenant
les éléments en position 2, 3, 4 et 6 de la suite initiale. En général, la solution n’est pas unique. Ici, une autre
solution est (1, 4, 5, 11).

Le principe géneral est le suivant :
On recherche une plus grande sous suite des n premier termes Xn = [X1, . . . , Xn], à partir de celles extraites

de X(n − 1) = [X1, . . . Xn] (notre sous problème), en s’interessant aux sous suites de X(n − 1) dont le dernier

Lycée J Decour 2 IPT Spé

2 LA PLUS LONGUE SOUS SUITE CROISSANTE

terme est le plus petit possible. On cherche parmi ces sous suites, la plus grande des sous suites auxquelles on
peut ajouter le terme Xn ou non et construire ainsi une nouvelles sous suite croissante dont le dernier terme
est minimal.

Exercice 2.1 Dans la suite M,X,P sont des listes L un entier.
1.

def recherche_dich (X,M,i):
""" X et M des liste X[M[1]] ,... ,X[M[-1]] croissante """
assert M [0]==0 and i<len(X)+1 and len(M)<= len(X)+1
L=len(M)-1
print(L)

s=1
if X[M[s]-1]>=X[i -1]:

return 0
if X[M[L]-1]<X[i -1]:

return L

while s<L -1:

if X[M[L]-1]<X[i -1]:
return L

j=int ((s+L)//2)

if X[M[j]-1]<X[i -1]:
s=j

else:
L=j

return s

def PGSSDynamique (X,M,P):
L=0
m=X[0]
n=len(X)
M[1]=1
L=1

for i in range (2,n+1):

j= recherche_dich (X,M[:L+1],i)

if j!=0:
P[i-1],M[j+1]=M[j],i

if j==0:
M[1]=i

L=max(L,j+1)

return L

2.3.
def Plusgrandesoussuite (X):

n=len(X)
M =[0]*(n+1)
P=[0]*n
L= PGSSDynamique (X,M,P)

Lycée J Decour 3 IPT Spé

3 POUR LES 5
2 : CORRECTION À L’AIDE DE L’ALGORITHME DE VITERBI, D’APRÈS MINES

PONT 2024

j=M[L]
u=[X[j -1]]

while j >0:
j=P[j]
u. append (X[j -1])

u. reverse ()
return u

4. Nous allons finalement adapter ce programmer pour rechercher la plus grande sous sécance commune
entre deux chaines (ici deux suites numérique)

Le problème de la plus longue sous-suite commune à deux suites S[0], S[2],..., S[n-1] et
T[0], T[2],..., T[m-1] peut être réduit au problème de la plus longue sous-suite croissante.

Pour cela, on note A[x] la liste des indices des éléments de S valant x par ordre décroissant. Si
i[1], i[2], ..., i[k] est une plus longue sous-suite strictement croissante de la suite obtenue en concaténant
A[T[0]], ..., A[T[m-1]], alors S[i[0]], ..., S[i[k-1]] est une plus longue sous-suite commune
à S et T. La taille de la suite obtenue par concaténation est au plus nm, mais seulement m si la
première suite ne contient pas d’élément en double. Ainsi, la réduction donne une méthode de résolution
du problème de la plus longue sous-suite commune relativement efficace dans des cas particuliers courants
. En appelant les programme précédant, proposer une fonction prenant comme paramètre deux liste et
renvoyant une des plus grande sous sécances commune aux deux suites. Les listes S et T seront des liste
d’entiers par forcément distincts.

def Soussecance (S,T):
A={}
for k in len(S):

if S[k] in A:
A[k]=S[k]+A[k]

else:
A[k]=[S[k]]

I=[]
for u in T:

if u in A:
I+=A[u]

i= Plusgrandesoussuite (I)
return [S[j] for j in i]

3 Pour les 5
2 : Correction à l’aide de l’algorithme de Viterbi, d’après Mines Pont

2024
Un message " d’origine" , codé sur K caractères assimilés pour l’exercice à des nombres entiers de 0 à K −1,

de longueur N , sera représenter comme une liste de longueur N composé de N entiers entre 0 et K − 1. Ce
message est transmit et modifier par des erreurs, ce nouveau message sera le message observé, qui sera toujours
une liste de longueur N d’entiers entre 0 et K − 1. Le but est de retrouver le message d’origine en corrigeant (
le mieux possible) les erreurs.

Exercice 3.1 On connait en partie le risque d’erreur stocké dans deux tableaux ou matrices de probabilité de
taille K × K, P et E. Ei,j est la probabilité d’observer le symbol i sachant que le symbol j a été émis. Pi,j est la
probabilité que le symbole j soit présent dans le message initial sachant que i le précède dans ce même message
(qui vient du fait que de la langue française par exemple certaines syllabes sont plus probable que d’autres).

On se donne un message observe obs de N entiers obs[i]∈ [|0, K − 1|] pour i ∈ [|0, K − 1|].
1. On propose une première approche Gloutone.

Lycée J Decour 4 IPT Spé

3 POUR LES 5
2 : CORRECTION À L’AIDE DE L’ALGORITHME DE VITERBI, D’APRÈS MINES

PONT 2024

On définit alors un graphe G orienté et pondéré, représentant tous les message initiaux, possible (
connaissant le message observé obs). Le graphe G est constitué d’un premier noeud initiale, une racine
arbitraire r, relier à K noeuds S0,j indiquant les symboles j possible du premier symbole du message
intial. Chacune des arrêtes est pondérée par 1

K . Les noeuds Si,j, suivant, indiqueront que le i ème symbol
du message initiale est la lettre j.

On construit finalement le graphe de tel sorte que :
Chaque noeuds Si,j admetent comme noeuds adjacents supérieur les K − 1 noeuds Si+1,k, pondéré

par Pj,kEobs[i],k (probabilité que le i ème symbole soit k sachant que le précédant était j et que celui
observé est obs[i]).

Un chemin sera donc un message intial possible et le produit des pondérations la probabilité qu’il soit
effectivement ce message.

(a) Programmer une fonction Graphe(obs,P,E) renvoyant le dictionnaire de la liste d’adjacence du
graphe G.

def Graphe (obs ,P,E):
G={}
N=len(obs)
K=len(P)
G[r]=[[(0,i),1/K] for i in range(K)]
for i in range(N):

for k in range(K):
G[(i,k)]=[]
for p in range(K):

pond=P[k,p]*E[obs[i+1,p]
G[(i,k)]. append ([(i+1,p),pond])

return G

(b) On testera le programme dans le cas K = 3, N = 8 et

P =

 0.3 0.2 0.5
0.4 0.4 0.2
0.2 0.3 0.5

 , E =

 0.7 0.2 0.3
0.2 0.7 0.1
0.1 0.1 0.6


(c) Proposer une fonction glouton(G,obs) renvoyant le message initiale en utilisant un algorithme

glouton. On rappelle qu’un algorithme glouton consiste à chaque étape de faire le choix localement
optimal. Ainsi si on se trouve au sommet Si,j on choisira l’arrête la plus probable.

def Glouton (G,obs):
N=len(obs)
message =[None]*N
A=G[r]
Max =0
v=(0 ,0)
for u in A:

if u[1]> Max:
v=u[0]

message [0]=v[1]
for i in range (1,N):

A=G[v]
Max =0
v=(i ,0)
for u in A:

if u[1]> Max:
v=u[0]

message [i]=v[1]
return message

Lycée J Decour 5 IPT Spé

4 L’ALGORITHME DE FLOYD WARSHALL.

2. On remarquera que l’algorithme consiste à trouver un chemin optimum, qui pourrait se résoudre avec
l’algorithme Dijstra. On propose ici une approche dynamique.

On pose T la matrice des Ti,j la valeur de probabilité maximum entre la racine et le noeud Si,j :{
Ti,j = maxk∈[|0,K−1|]

(
Tk,j−1 × Pk,i × Eobs[j],i

)
si N − 1 ≥ j > 0

Ti,0 = Eobs[0],i

Compléter le programme suivant :

def Viterbi (obs ,P,E,K,N):
T=[[0 for j in range(N)] for i in range(K)]
for i in range(K):

T[i][0]=E[obs [0]][i]
for i in range (1,K):

for j in range (1,N):
M=0
for k in range(K):

m=T[k][j -1]*P[k,i]*E[obs[j],i]
if m>M:

M=m
T[i][j]=M

return T

3. Proposer une fonction renvoyant le message initial.

4 L’algorithme de Floyd Warshall.
En informatique, l’algorithme de Floyd-Warshall est un algorithme pour déterminer les distances des plus

courts chemins entre toutes les paires de sommets dans un graphe orienté et pondéré, en temps cubique au
nombre de sommets.

L’algorithme de Floyd-Warshall prend en entrée un graphe orienté et valué, décrit par une matrice d’ad-
jacence donnant le poids d’un arc lorsqu’il existe et la valeur +∞ sinon. Le poids d’un chemin entre deux
sommets est la somme des poids sur les arcs constituant ce chemin. Les arcs du graphe peuvent avoir des poids
négatifs, mais le graphe ne doit pas posséder de cycle de poids strictement négatif. L’algorithme calcule, pour
chaque paire de sommets, le poids minimal parmi tous les chemins entre ces deux sommets.

On suppose que les sommets de G sont {1, 2, 3, 4, ..., n}. Il résout successivement les sous-problèmes suivants :
W k

i,j est le poids minimal d’un chemin du sommet i au sommet j n’empruntant que des sommets intermé-
diaires dans {1, 2, 3, ..., k} s’il en existe un, et +∞ sinon. On note W k le tableau des W k

i,j . Pour k = 0, W 0

est la matrice d’adjacence définissant G. Maintenant, pour trouver une relation de récurrence, on considère un
chemin p entre i et j de poids minimal dont les sommets intermédiaires sont dans {1, 2, 3, ..., k}. De deux choses
l’une :

— soit p n’emprunte pas le sommet k ;
— soit p emprunte exactement une fois le sommet k (car les circuits sont de poids positifs ou nuls) et p

est donc la concaténation de deux chemins, entre i et k et k et j respectivement, dont les sommets
intermédiaires sont dans {1, 2, 3, ..., k − 1}.

L’observation ci-dessus donne la relation de récurrence :

W k
i,j = min

(i,j)∈[|1,n|]2
(W k−1

i,j , W k−1
i,k + W k−1

k,j)

pour tous i, j etk dans {1, 2, 3, 4..., n}. Ainsi on résout les sous-problèmes par valeur de k croissante.

Exercice 4.1 On supposera que le graphe G, nous est donné sous la forme d’une liste d’ajacence stocker dans
un dictionnaire G, où G[i] renvoie la liste des uplets (vj , pj) de telle sorte que pj soit le poids (relatif de
l’arrête de ui vers vj.

Lycée J Decour 6 IPT Spé

4 L’ALGORITHME DE FLOYD WARSHALL.

1. Programmer une fonction Adj(G) retournant sous forme de tableau, la matrice d’ajacence évoquée ci-
dessus et prenant comme paramètre le dictionnaire G de la liste d’ajacence du graphe (on prendra garde
au fait que la ligne i = 0 est la première ligne).

2. Proposez une fonction cycle(A), renvoyant true si la matrice d’ajdacence n’a aucun cocycle de longueur
1 de poids négatif et False sinon.

3. Programmer une fonction FW(A,k) prenant comme paramètre le tableau A de la matrice d’adjacence et
renvoyant W k et s’arrête si le graphe pocède un cocycle de poids négatif.

4. Terminer le programme de la fonction FloydWarshall(G) renvoyant la distance du plus cours chemin.

Lycée J Decour 7 IPT Spé

