TP 3

Dans ce TP nous allons travailler la programmation dynamique, illustrée par trois algorithmes classiques :
Le probléme du sac & dos-La plus longue sous suite croissante- Algorithme de Floyd Warshall.

1 Echauffement le sac a dos

En adaptant le programme sur le rendu de monnaie, nous allons nous interesser au probleme dit du sac a
dos.
Soit E un ensemble de n éléments & ranger dans un sac a dos de capacité maximale W (son volume) ; chaque
élément e a une valeur v (on les numérote de 1 a n), chaque élément a un poids w (on les numérote de 1 a n).

On cherche a trouver un sous-ensemble F' C E tel que :

— La somme des poids des éléments dans F' ne dépasse pas la capacité W.

— La somme des valeurs des éléments de F' est maximale (E v(e)).
eckF
On souhaite donc une valeur maximum sans dépasser le poids maximum autorisé.

La programmation dynamique permet de scinder les entrées du probléme en autant de sous-ensemble que
nécessaire. Le probléme est résolu pour chacun des sous-ensembles en utilisant les solutions précédentes pour
calculer la valeur du sous-ensemble courant. Il faut cependant qu’il n’y ait qu'un nombre polynomial de sous-
problemes.

w et u deux dictionnaires contenant , le poids et les valeurs de chaque objet.

Opt(i, j) la valeur optimal de poids maximum j constituer a partir des éléments de 1 a 7.

Nous pouvons établir la relation de récurrence.

Opt(i,j) =0 sit=0

Opt (i, j)=0pt(i-1,3j) siw; >jet g <W

Opt(i,j) = max(0Opt(i-1,j),v; +0pt(i — 1,5 — w;) sinon
Exercice 1.1 1. Interpréter cette relation de récurrence

2. On propose une programmation de type dynamique, qui va calculer la solution aux sous-problémes une
seule fois et le mémoriser dans une table pour que ce calcul puisse étre réutilisé, en adaptant l’algorithme
sutvant :

Etape 1 : On construit un tableau V de n + 1 lignes et Poids + 1 colonnes. Pour 1 < i < n et
0 < j < Poids, la case V[i1[51 va mémoriser la valeur maximale des sous-ensembles de taille
au plus i. Si on arrive a calculer toutes les cases de ce tableau, la case V[n J[Poids] contiendra
la valeur mazimale des éléments qui peuvent étre rangés dans le sac a dos, i.e. la solution a notre
probléme.

Etape 2 : On construit par récurrence la valeur d’une solution optimale en termes de solutions d des
sous-problémes :

Initialisation : On pose : V[0, 7] = 0 pourQ < j < poids (on n'a pas gardé d’élément) V[i][3]
—o0 pour j < 0 (entrée interdite)
Récursion : On utilise pour 1 <i<n ,0<j<W

V[i][j] = max(V[i - 1][j],v_% + V[i-1][5 ~w_%])

Etape 3 : On calcule les valeurs de V[i][7] de fagon itérative en partant de l'initialisation de V
(cf. étape la valeur optimale.

2 LA PLUS LONGUE SOUS SUITE CROISSANTE

Programmer une fonction sacados(v,w,Poids) prenant comme parametre deux listes v et w, res-
pectivement, la liste des valeurs des objets et elle des poids, Poids étant le poids maximum autorisé. La
fonction devra renvoyer la valeur mazimum autorisée.

def sacados (v,w,n,Poids):
"y la liste des waleurs des objets,w celle des poids, Poids le p
n=len (v)
V=[z[:] for = in [[0]*(Poids+1)] * (n+1)] # <intialisation de V
ou aussti V=np.zeros((n+1,Poids))
for i in range(1,n+1):
for j in range(Poids+1):
if wli]J<=5: # on ajoute l’element <
VIill[jl=max (V[i-1][5],v[i]+V[i-1][5-w[i]])
else: # l’element 72 n’est pas ajoute
VIitl[3]=V[i-1][35]
return V[n][Poids]

3. Modifier le programme afin qu’il renvoie le contenu du sac d dos :

def sad(v,w,Poids):
n=Llen (n)
V=[z[:] for = in [[0]*(Poids+1)] * (n+1)]
memo=[z[:] for = in [[0]*(Poids+1)] * (n+1)]
Mais ausst
#V, memo=np. zeros ((n+1,Poids)),np.zeros ((n+1,Poids))
elements=[]
for i in range(1,n+1):
for 5 in range(Poids+1):
if ((wlil<= j3) and (v[iJ+V[i-1][j-wl[i]]>V[i-1]
VIi][j]=v[i]+V[i-1][5-w[i]]
memo [4] [j]=1
else:
Vitl[3]=V[i-1][3]
memo [1] [7]=0
K=Poids
for % 4in range(n,0,-1):
if memo[i][K]==1:
elements.append (i)
K=K-w[i-1]
return (V[n][Poids], elements,Matriz (memo),Matriz (V))

2 La plus longue sous suite croissante

La recherche d’une plus longue sous-suite strictement croissante dans une suite finie est un probléeme clas-
sique en algorithmique. Ce probléme peut étre résolu en temps O(nlogn) avec n la longueur de la suite.

L’entrée du probléeme est une suite finie x1,...,x,. L’objectif est de trouver une sous-suite strictement
croissante de la suite , pour la plus grande longueur L possible, c-a-d compsée du plus grand nombre possible
de termes .

Par exemple, la suite (6,1,4,9,5,11) posseéde des sous-suites strictement croissantes de longueur 4, mais
aucune de longueur 5. Une plus longue sous- suite strictement croissante est (1,4,9,11), obtenue en prenant
les éléments en position 2, 3,4 et 6 de la suite initiale. En général, la solution n’est pas unique. Ici, une autre
solution est (1,4,5,11).

Le principe géneral est le suivant :

On recherche une plus grande sous suite des n premier termes Xn = [X,..., X,,], a partir de celles extraites
de X(n—1) = [Xy,...X,] (notre sous probléme), en s’interessant aux sous suites de X (n — 1) dont le dernier

Lycée J Decour 2 IPT Spé

01d:¢

[7].

2 LA PLUS LONGUE SOUS SUITE CROISSANTE

terme est le plus petit possible. On cherche parmi ces sous suites, la plus grande des sous suites auxquelles on
peut ajouter le terme X, ou non et construire ainsi une nouvelles sous suite croissante dont le dernier terme

est minimal.

Exercice 2.1 Dans la suite M,X, P sont des listes L un entier.

1.
def recherche_dich(X,M,1):

mmwn-x et M des liste X[M[1]],...,X[M[-1]]croissante"""
assert M[0]==0 and i<len(X)+1 and len(M)<=len(X)+1
L=len (M) -1

print (L)

s=1

if X[M[s]-1]>=X[t1-1]:
return 0

if X[M[L]-1]<X[i-1]:
return L

whtle s<L-1:

if X[M[L]-1]<X[i-1]:
return L

j=int ((s+L)//2)

if X[M[5]-1]<X[i-1]:
s=7
else:
L=j
return s

def PGSSDynamique (X,M,P):
L=0
m=X[0]
n=1len (X)
M[1]=1
L=1

for i in range(2,n+1):

j=recherche_dich (X,M[:L+1], 1)

if §1=0:
Pl[i-1],M[5+1]=M[5], %
if §==0:
M[1]=4
L=maz (L, j+1)

return L

def Plusgrandesoussuite (X):
n=len (X)
M=[0]*(n+1)
P=[0]*n
L=PGSSDynamique (X,M, P)

Lycée J Decour 3

IPT Spé

3 POUR LES g : CORRECTION A L’AIDE DE L’ALGORITHME DE VITERBI, D’APRES MINES
PONT 2024

j=M[L]
u=[X[7-17]

while j52>0:

j=P[7]

u.append (X[5-1])
u.reverse ()
return u

4. Nous allons finalement adapter ce programmer pour rechercher la plus grande sous sécance commune
entre deux chaines (ici deuz suites numérique)

Le probleme de la plus longue sous-suite commune d deux suites S[0], S[2],..., S[n-1] et
T[o], T[2],..., T[m-1] peut étre réduit au probleme de la plus longue sous-suite croissante.

Pour cela, on note Alz] la liste des indices des éléments de S valant © par ordre décroissant. Si
i1], i[2], ..., i[k] est une plus longue sous-suite strictement croissante de la suite obtenue en concaténant
Alr[ol]l, ..., A[T[m-1]], alors S[i[0]], ..., S[il[k-1]] est une plus longue sous-suite commune
a S et T. La taille de la suite obtenue par concaténation est au plus nm, mais seulement m si la
premiére suite ne contient pas d’élément en double. Ainsi, la réduction donne une méthode de résolution
du probléme de la plus longue sous-suite commune relativement efficace dans des cas particuliers courants
. En appelant les programme précédant, proposer une fonction prenant comme parameétre deux liste et
renvoyant une des plus grande sous sécances commune aur deux suites. Les listes S et T seront des liste
d’entiers par forcément distincts.

def Soussecance (S, T):
A={}
for k in len(S):
if S[k] in A:
Alk]=S[k]+A[k]
else:
Alk]=[S[k]]
I=[]
for u 2n T:
if u in A:
I+=A[u]
1= Plusgrandesoussutite (I)
return [S[j] for j in <]

3 Pour les 2 : Correction a laide de Ualgorithme de Viterbi, d’aprés Mines Pont

2
202/

Un message " d’origine" , codé sur K caractéres assimilés pour I'exercice a des nombres entiers de 0 a K —1,
de longueur N, sera représenter comme une liste de longueur N composé de N entiers entre 0 et K — 1. Ce
message est transmit et modifier par des erreurs, ce nouveau message sera le message observé, qui sera toujours
une liste de longueur N d’entiers entre 0 et K — 1. Le but est de retrouver le message d’origine en corrigeant (
le mieux possible) les erreurs.

Exercice 3.1 On connait en partie le risque d’erreur stocké dans deuz tableaur ou matrices de probabilité de

taille K x K, P et E. E; j est la probabilité d’observer le symbol i sachant que le symbol j a été émis. P; ; est la

probabilité que le symbole j soit présent dans le message initial sachant que i le précéde dans ce méme message

(qui vient du fait que de la langue francgaise par exemple certaines syllabes sont plus probable que d’autres).
On se donne un message observe obs de N entiers obs[i]€ [|0, K — 1|] pouri € [|0, K — 1|].

1. On propose une premiére approche Gloutone.

Lycée J Decour 4 IPT Spé

3 POUR LES g : CORRECTION A L’AIDE DE L’ALGORITHME DE VITERBI, D’APRES MINES
PONT 2024

On définit alors un graphe G orienté et pondéré, représentant tous les message initiaux, possible (
connaissant le message observé obs). Le graphe G est constitué d’un premier noeud initiale, une racine
arbitraire r, relier a K noeuds So ; indiquant les symboles j possible du premier symbole du message
intial. Chacune des arrétes est pondérée par % Les noeuds S; j, suivant, indiqueront que le i éme symbol
du, message initiale est la lettre j.

On construit finalement le graphe de tel sorte que :

Chaque noeuds S; ; admetent comme noeuds adjacents supérieur les K — 1 noeuds Sii1k, pondéré
par Pj xEops[i] k (probabilité que le i éme symbole soit k sachant que le précédant était j et que celui
observé est obs[i]).

Un chemin sera donc un message intial possible et le produit des pondérations la probabilité qu’il soit
effectivement ce message.

(a) Programmer une fonction Graphe(obs,P,E) renvoyant le dictionnaire de la liste d’adjacence du
graphe G.

def Graphe (obs,P,E):
G=1{}
N=1len (obs)
K=1len (P)
Glr]=[[(0,%),1/K] for % in range (K)]
for 4 in range(N):
for k in range (K):
Gl(i,k)I=[]
for » in range (K):
pond=P[k,p]*E[obs[i+1,p]
G[(i,k)].append ([(i+1,p),pond])

return G

(b) On testera le programme dans le cas K =3, N =8 et

0.3 02 05 0.7 0.2 0.3
P=1]04 04 02 |, E=| 02 07 0.1
0.2 03 05 0.1 0.1 0.6

(c) Proposer une fonction glouton(G,obs) renvoyant le message initiale en wutilisant un algorithme
glouton. On rappelle qu’un algorithme glouton consiste a chaque étape de faire le choix localement
optimal. Ainsi si on se trouve au sommet S;; on choisira Uarréte la plus probable.

def Glouton (G, obs):
N=len(obs)
message=[None] *N
A=G[r]
Maz=0
v=(0,0)
for u wn A:
if wl1]>Maz:
v=u[0]
message [0]=v [1]
for i in range(1,N):
A=G[v]
Maz=0
v=(%,0)
for u in A:
if wl[1]>Maz:
v=u[0]
message[i]=v[1]
return message

Lycée J Decour 5 IPT Spé

4 L’ALGORITHME DE FLOYD WARSHALL.

2. On remarquera que l’algorithme consiste a trouver un chemin optimum, qui pourrait se résoudre avec
lalgorithme Dijstra. On propose ici une approche dynamique.

On pose T' la matrice des T; ; la valeur de probabilité mazimum entre la racine et le noeud S; ; :

{ Ti,j = maXge(jo,k—1|] (Tk,jq X Py x Eobsm,i) si. N-1>3j>0
Ti0 = Eops[0],i

Compléter le programme suivant :

def Viterbi (obs,P,E,K,N):
T=[[0 for j in range(N)] for % in range (K)]
for © in range (K):
T[i][0]=E[obs [0]][%]
for 4 in range (1,K):
for j in range(1,N):
M=0
for k in range (K):
m=T[k][j-1]*P[k,i]*E[obs[j],]
1f m>M:
M=m
T[i][j]=M

return T

3. Proposer une fonction renvoyant le message initial.

4 L’algorithme de Floyd Warshall.

En informatique, ’algorithme de Floyd-Warshall est un algorithme pour déterminer les distances des plus
courts chemins entre toutes les paires de sommets dans un graphe orienté et pondéré, en temps cubique au
nombre de sommets.

L’algorithme de Floyd-Warshall prend en entrée un graphe orienté et valué, décrit par une matrice d’ad-
jacence donnant le poids d’un arc lorsqu’il existe et la valeur 400 sinon. Le poids d’un chemin entre deux
sommets est la somme des poids sur les arcs constituant ce chemin. Les arcs du graphe peuvent avoir des poids
négatifs, mais le graphe ne doit pas posséder de cycle de poids strictement négatif. L’algorithme calcule, pour
chaque paire de sommets, le poids minimal parmi tous les chemins entre ces deux sommets.

On suppose que les sommets de G sont {1,2,3,4,...,n}. Il résout successivement les sous-problémes suivants :

ij est le poids minimal d’un chemin du sommet ¢ au sommet j n’empruntant que des sommets intermé-
diaires dans {1,2,3,...,k} s'il en existe un, et 400 sinon. On note W¥ le tableau des ij Pour k = 0, W°
est la matrice d’adjacence définissant G. Maintenant, pour trouver une relation de récurrence, on considére un
chemin p entre i et j de poids minimal dont les sommets intermédiaires sont dans {1, 2,3, ..., k}. De deux choses
I'une :

— soit p n’emprunte pas le sommet k;

— soit p emprunte exactement une fois le sommet k (car les circuits sont de poids positifs ou nuls) et p
est donc la concaténation de deux chemins, entre ¢ et k et k et j respectivement, dont les sommets
intermédiaires sont dans {1,2,3,...,k — 1}.

L’observation ci-dessus donne la relation de récurrence :

ko : k—1 yrk—1 k—1
Wis = e Wes - Wi+ Wy

pour tous i, j etk dans {1,2,3,4...,n}. Ainsi on résout les sous-problémes par valeur de k croissante.

Exercice 4.1 On supposera que le graphe G, nous est donné sous la forme d’une liste d’ajacence stocker dans
un dictionnaire G, ot G[%i] renvoie la liste des uplets (vj,p;) de telle sorte que p; soit le poids (relatif de
larréte de u; vers v;.

Lycée J Decour 6 IPT Spé

4 L’ALGORITHME DE FLOYD WARSHALL.

1. Programmer une fonction Adj(G) retournant sous forme de tableau, la matrice d’ajacence évoquée ci-
dessus et prenant comme paramétre le dictionnaire G de la liste d’ajacence du graphe (on prendra garde
au fait que la ligne i = 0 est la premiére ligne).

2. Proposez une fonction cycle(4), renvoyant true si la matrice d’ajdacence n’a aucun cocycle de longueur
1 de poids négatif et False sinon.

3. Programmer une fonction FW(4,k) prenant comme parameétre le tableau A de la matrice d’adjacence et
renvoyant W¥ et s’arréte si le graphe pocéde un cocycle de poids négatif.

4. Terminer le programme de la fonction FloydWarshall (G) renvoyant la distance du plus cours chemin.

Lycée J Decour 7 IPT Spé

