Géométrie

Lois entrée/sortie géométrique : pour relier le paramètre d'entrée (évolution fournie par un actionneur) au paramètre de sortie (mouvement récupéré en sortie).

a) Aspect linéaire: systématique

On parcourt le mécanisme en passant par un point A_i de chaque liaison :

$$\overline{\overline{A_1A_2} + \overline{A_2A_3} + ... + \overline{A_{n+1}A_1}} = \overline{0}$$
 \Rightarrow 3 équations scalaires par projection dans une base commune

b) Aspect angulaire: pas souvent

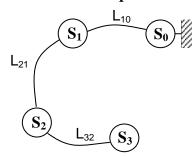
A partir d'une base de référence, on parcourt les différentes bases attachées aux différents solides :

$$(\vec{x}_0, \vec{x}_1) + (\vec{x}_1, \vec{x}_2) + ... + (\vec{x}_n, \vec{x}_0) = 0$$

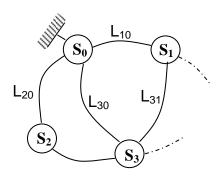
idem dans deux autres plans perpendiculaires \Rightarrow 3 équations scalaires.

c) Type de chaînes suivant le graphe de liaisons

Chaîne simple ouverte



Chaîne complexe fermée



Plusieurs fermetures géométriques sont nécessaires dans ce cas

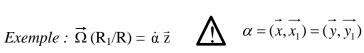
d) En dérivant, on obtient la loi entrée/sortie cinématique ou en écrivant la fermeture cinématique issue de la composition des mouvements

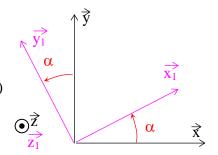
Cinématique

Cinématique du point :

•
$$\vec{V}(M/R) = \left[\frac{d\vec{OM}}{dt}\right]_R = \frac{d\vec{OM}}{dt_{/R}}$$
 O: origine ou point fixe du repère R
• $\vec{a}(M/R) = \vec{\Gamma}(M/R) = \left[\frac{d^2\vec{OM}}{dt^2}\right]_R = \left[\frac{d\vec{V}(M/R)}{dt}\right]_R$

- $\left[\frac{d\vec{U}}{dt} \right]_{R} = \frac{da}{dt} \vec{x} + \frac{db}{dt} \vec{y} + \frac{dc}{dt} \vec{z} = \dot{a} \vec{x} + \dot{b} \vec{y} + \dot{c} \vec{z}$ si $\vec{U} = \begin{bmatrix} a \\ b \text{ est exprimé dans le repère R} \end{bmatrix}$





Lycée Claude Fauriel

Cinématique du solide :

- $\vec{V}(B \in R_1/R_0) = \vec{V}(A \in R_1/R_0) + \overrightarrow{BA} \wedge \vec{\Omega}(R_1/R_0)$ (Babar)
- $\vec{V}(A \in R_n/R_0) = \vec{V}(A \in R_n/R_{n-1}) + \vec{V}(A \in R_{n-1}/R_{n-2}) + ... + \vec{V}(A \in R_1/R_0)$
- $\bullet \quad \vec{\Omega}\left(R_{n}/R_{0}\right) = \vec{\Omega}\left(R_{n}/R_{n\text{-}1}\right) + \vec{\Omega}\left(R_{n\text{-}1}/R_{n\text{-}2}\right) + \ldots + \vec{\Omega}\left(R_{1}/R_{0}\right)$
- $V(S/R) = \begin{cases} \vec{\Omega}(S/R) \\ \vec{V}(A \in S/R) \end{cases}$ torseur cinématique de S/R
- $V(R_n/R_0) = V(R_n/R_{n-1}) + V(R_{n-1}/R_{n-2}) + ... + V(R_1/R_0)$ (en un même point de réduction)

Contact entre solides:

Condition de non glissement = vitesse de glissement nulle $\vec{V}(I,S_1/S_2) = \vec{0}$ avec I point de contact entre S_1 et S_2 .

Le point I étant la plupart du temps ni fixe dans S_1 ni fixe dans S_2 , on ne peut expliciter cette condition en dérivant un vecteur position (c'est une vitesse d'entraînement). Donc on décompose...

Forme des torseurs cinématiques associés aux liaisons parfaites (sans frottement) : Voir Tableau

Interprétation graphique :

Cas particuliers:

• Translations rectiligne et <u>circulaire</u>: $\overrightarrow{\Omega}$ (S/R) = $\overrightarrow{0}$ donc la vitesse est la même partout.

Exemple de translation circulaire : le parallélogramme déformable

os solide \$ Xs

⊙ž

• Rotation autour d'un axe (O, \vec{z}): $\vec{V}(0 \in S/R) = \vec{0}$. La vitesse est orthoradiale et proportionnelle au rayon (« $V = R.\omega$ »)

Propriétés graphiques :

• Centre Instantané de Rotation : $\vec{V}(I_{SR} \in S/R) = \vec{0}$. Il se trouve à l'intersection des \bot aux vitesses \Rightarrow tout mouvement peut s'interpréter comme une rotation...

Exemple : une échelle contre un mur qui tombe

P(A = E/R) \(\perp \) Is

| V(B = E/R) \(\perp \) Is

| V(B = E/R) \(\perp \) Is

| V(B = E/R) \(\perp \) Is

• Équiprojectivité : $\overrightarrow{V}(B \in S/R)$. $\overrightarrow{AB} = \overrightarrow{V}(A \in S/R)$. \overrightarrow{AB}

Pour info

Statique

Modélisation effort:

• Action hydrostatique :
$$T(\text{fluide} \rightarrow S) = \begin{cases} \int_{S} -p(M) \vec{n}(M) dS \\ \int_{S} -\overrightarrow{OM} \wedge p(M) \vec{n}(M) dS \end{cases}$$

• Action de contact entre solides :
$$T(S_1 \rightarrow S_2) = \begin{cases} \int\limits_{S}^{S} -p(M) \vec{n}(M) dS + f \ p(M) \vec{t}(M) dS \\ \int\limits_{S}^{S} \overrightarrow{OM} \wedge (-p(M) \vec{n}(M) dS + f \ p(M) \vec{t}(M) dS \end{cases}$$
 A la limite du glissement

p(M) = pression de contact en M

f = coefficient de frottement ($f = tan \phi$ avec ϕ l'angle de frottement

 \vec{n} (M) = vecteur unitaire normal au plan tangent commun en M,

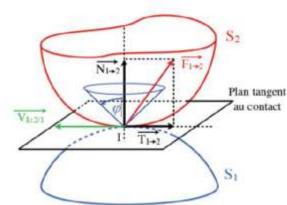
orienté vers l'extérieur du solide isolé.

t (M) = vecteur unitaire du plan tangent commun en M opposé à la vitesse de glissement.

• Contact ponctuel avec frottement sec (modèle de Coulomb)

Cas du contact ponctuel : $\vec{F}_{1 \rightarrow 2} = \vec{N}_{1 \rightarrow 2} + \vec{T}_{1 \rightarrow 2}$

- Si $\vec{V}(I \in 2/1) = \vec{0}$; $\|\vec{T}_{1 \to 2}\| \le f \|\vec{N}_{1 \to 2}\|$ et $\vec{T}_{1 \to 2}$ de direction inconnue $(\in \text{plan tangent})$
- Si $\vec{V}(I \in 2/1) \neq \vec{0}$; $\|\vec{T}_{1\to 2}\| = f \|\vec{N}_{1\to 2}\|$ et $\vec{T}_{1\to 2}$ opposé à $\vec{V}(I \in 2/1)$



• Contact surfacique avec frottement sec : Couple résistant constant

Forme des torseurs d'actions mécaniques associés aux liaisons parfaites (sans frottement) : Voir Tableau

Avec hypothèse **PB Plan** (**x,y**):
$$T(S_1 \rightarrow S_2) = \begin{cases} X & - \\ Y & - \\ - & N \end{cases}_R$$
 on a moins d'inconnues à gérer...

Principe Fondamental de la Statique :

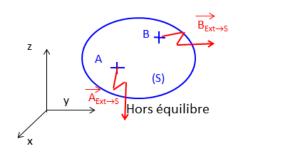
•
$$T(\bar{E} \to E) = \left\{ \vec{0} \atop \vec{0} \right\} \Rightarrow \left\{ egin{align*} & Th\'eor\`eme de la R\'esultante Statique : E en \'equilibre / R_g $\Rightarrow \vec{R}(\bar{E} \to E) = \vec{0} \\ & Th\'eor\`eme du Moment Statique : E en \'equilibre / R_g $\Rightarrow \vec{M}_0(\bar{E} \to E) = \vec{0} \\ & (\forall \ le \ point \ 0) \end{array} \right.$$$$

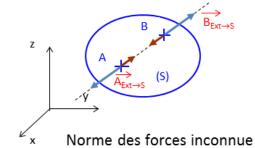
• Théorème des actions réciproques : $T(E_2 \rightarrow E_1) = -T(E_1 \rightarrow E_2)$

Lycée Claude Fauriel Page 3 sur 4

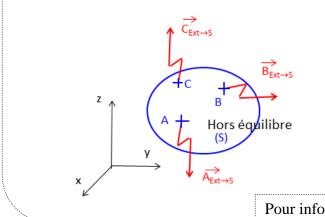
Interprétation graphique :

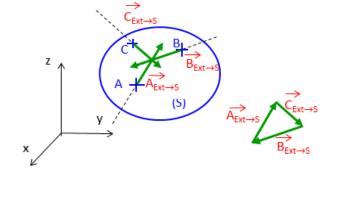
si un solide (ou un ensemble de solides) est en équilibre sous l'action de **2 efforts** modélisables par des **glisseurs**, ceux-ci sont **colinéaires**, **de somme nulle et de même droite support**.





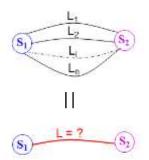
• si un solide (ou un ensemble de solides), soumis à **3 actions** modélisables par des **glisseurs**, est en équilibre, alors ces trois glisseurs sont : **coplanaires** , **concourants ou parallèles** , **de somme vectorielle nulle**





Liaison équivalente : pas fréquent

Liaisons en parallèle :



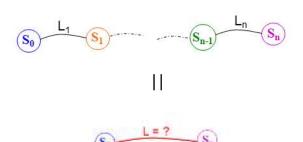
Détermination avec les torseurs d'inter-efforts

$$T_{L_{n_i}}(S_1 \to S_2) = \sum_{i=1}^n T_{L_i}(S_1 \to S_2)$$

Détermination avec les torseurs cinématiques :

$$V_{L_{i_1}}(S_1/S_2) = V_{L_1}(S_1/S_2) = ... = V_{L_1}(S_1/S_2) \quad \forall i$$

Liaisons en série :



Détermination avec les torseurs cinématiques : (Loi de composition des mouvements)

$$V_{L_n}(S_n/S_0) = \sum_{i=1}^n V_{L_i}(S_i/S_{i-1})$$

Détermination avec les torseurs d'inter-efforts :

$$T_{L_n}(S_n/S_0) = T_{L_n}(S_n/S_{n-1}) = ... = T_{L_1}(S_1/S_0)$$

Lycée Claude Fauriel Page 4 sur 4