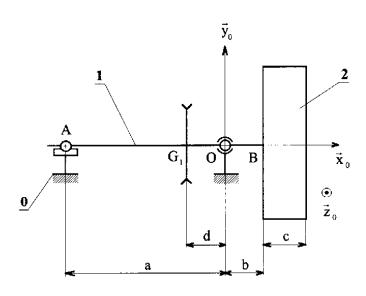
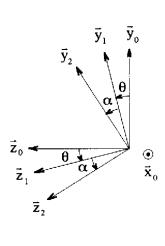
Equilibreuse de roue de voiture

Afin d'équilibrer des roues de voitures, on place la roue sur un rotor (photo cicontre) et on fait tourner l'ensemble. La machine indique ensuite à l'opérateur la position des masses de plomb qu'il doit placer sur les jantes intérieure et extérieure.

L'équilibreuse étudiée permet l'équilibrage des roues démontées. Elle est constituée d'une arbre 1 guidé en rotation par deux paliers à roulement en O et A. Ces paliers en liaison élastique avec le bâti 0, dans une seule direction à l'aide de deux lames flexibles, permettent l'enregistrement des composantes horizontales des résultantes d'action mécanique dans les paliers à roulement, par l'intermédiaire de deux capteurs couplés à un repérage de la position angulaire de l'arbre 1.



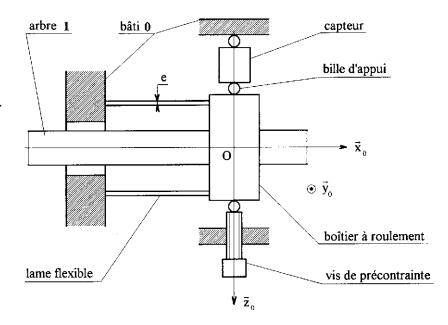


Le repère R_0 (O, \vec{x}_0 , \vec{y}_0 , \vec{z}_0) est lié au bâti $\boldsymbol{0}$ (\vec{y}_0 vertical ascendant).

Le repère R₁ (O, \vec{x}_0 , \vec{y}_1 , \vec{z}_1) est lié à l'arbre **1**. On pose $\theta = (\vec{y}_0, \vec{y}_1)$ avec $\dot{\theta} = \text{constante}$.

L'arbre $\mathbf{1}$ est entraîné en rotation par une courroie sur une poulie fixée au centre d'inertie G_1 de l'arbre $\mathbf{1}$. Le torseur d'action mécanique de la courroie sur la poulie est de la forme:

$$\mathbf{T}(\text{courroie} \rightarrow \text{poulie}) = \begin{cases} -T \ \vec{\mathbf{y}}_0 \\ C_m \ \vec{\mathbf{x}}_0 \end{cases}$$



L'arbre 1 (avec la poulie), de masse m_I , a pour moment d'inertie I_I par rapport à l'axe (O, \vec{x}_0) et est équilibré en rotation.

La roue 2, à équilibrer, est fixée sur 1. Le repère R_2 (B, \vec{x}_0 , \vec{y}_2 , \vec{z}_2) est lié à la roue 2 avec $\alpha = (\vec{y}_1, \vec{y}_2)$, angle constant mais à priori inconnu. La roue 2, de masse m_2 , a pour centre d'inertie G_2 dont la position est donnée par $\overrightarrow{BG}_2 = h\vec{x}_0 + \rho\vec{z}_2$, h et ρ étant des inconnues.

Lycée Claude Fauriel Page 1 sur 2

La matrice d'inertie en B de la roue 2 dans la base $(\vec{x}_0, \vec{y}_2, \vec{z}_2)$ est de la forme : $\mathcal{J}_B(2) = \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{R_2}$

On note
$$T(0 \rightarrow 1) = \begin{cases} X_0 & 0 \\ Y_0 & 0 \\ Z_0 & 0 \end{cases}_{R_0}$$
 et $T'(0 \rightarrow 1) = \begin{cases} 0 & 0 \\ Y_A & 0 \\ Z_A & 0 \end{cases}_{R_0}$ les torseurs d'actions mécaniques de $\mathbf{0}$ sur $\mathbf{1}$.

1 – En appliquant le principe fondamental de la dynamique à l'ensemble $1 \cup 2$ en O, déterminer les composantes X_O , Y_O , Z_O , Y_A et Z_A des résultantes d'actions mécaniques du bâti 0 sur l'arbre 1 en fonction des données.

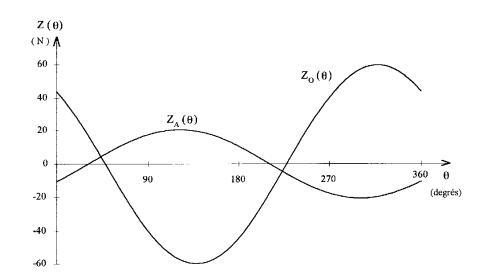
On utilise deux capteurs d'efforts, en O et A, situés dans un plan horizontal et couplés à un capteur angulaire de l'arbre 1, pour mesurer les composantes suivant \vec{z}_0 des résultantes d'action mécanique $Z_O(\theta)$ et $Z_A(\theta)$ du bâti 0 sur l'arbre 1.

2 – Déterminer, en fonction de $Z_0(0)$, $Z_0(\pi/2)$, $Z_A(0)$ et $Z_A(\pi/2)$, les coordonnées ρ et α du centre d'inertie G_2 de la roue 2, ainsi que les produits d'inertie E et F.

On donne:

 $m_2 = 18 \text{ kg}$ a = 460 mm b = 80 mm $\dot{\theta} = 60 \text{ rad/s}$

Les capteurs fournissent les courbes ci-contre et les valeurs ci-dessous:



θ en degrés	0	30	60	90	120	150	180	210	240	270	300	330
$Z_{O}(\theta)$ en N	44,05	18,00	-12,86	-40,29	-56,92	-58,29	-44,05	-18,00	12,86	40,29	56,92	58,29
$Z_A(\theta)$ en N	-10,53	-0,28	10,04	17,68	20,57	17,96	10,53	0,28	-10,04	-17,68	-20,57	-17,96

3 – En déduire les valeurs numériques de ρ , α , E et F.

La roue sera équilibrée avec deux masselottes 3 et 4, assimilables à des points matériels M_3 et M_4 de masse m_3 et m_4 , situées de part et d'autre de la jante, de telle sorte que:

$$\overrightarrow{BM}_3 = r\overrightarrow{u}_3$$
 et $\overrightarrow{BM}_4 = c\overrightarrow{x}_0 + r\overrightarrow{u}_4$ avec $\beta_i = (\overrightarrow{z}_2, \overrightarrow{u}_i)$

r étant le rayon de la jante et c son épaisseur.

4 – Ecrire les conditions d'équilibrage de la roue 2.

5 – Déterminer les masses m_3 et m_4 des masselottes ainsi que leur position β_3 et β_4 sur la jante en fonction des caractéristiques de la roue.

On donne: r = 190 mm c = 180 mm

6 – En déduire les valeurs numériques de m_3 , m_4 , β_3 et β_4 .

Lycée Claude Fauriel Page 2 sur 2