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Performances des systèmes asservis 

 

 
 

extraits du référentiel de 2
nde 

année 

 

Compétence visée Savoir-faire associé 

Appréhender les analyses fonctionnelle et 

structurelle 

Identifier et interpréter les modèles des constituants 

du système 

Proposer un modèle de connaissance et de 

comportement 

Associer un modèle à une source d’énergie 

Associer un modèle aux composants d’une chaine 

d’énergie 

Associer un modèle aux composants d’une chaine 

d’information 

Valider un modèle 

Réduire l’ordre de la fonction de transfert selon 

l’objectif visé, à partir des pôles dominants qui 

déterminent la dynamique asymptotique du système 

Procéder à la mise en œuvre d’une démarche de 

résolution analytique 

Analyser la stabilité d’un système à partir de 

l’équation caractéristique 

Déterminer les paramètres permettant d’assurer la 

stabilité du système 

Relier la stabilité aux caractéristiques fréquentielles 

Déterminer l’erreur en régime permanent vis-à-vis 

d’une entrée en échelon ou en rampe (consigne ou 

perturbation) 

Relier la précision aux caractéristiques 

fréquentielles 
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Simuler 

pour anticiper 
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Illustration du cours : roue autonome ez-Wheel pour une implantation sur un fauteuil roulant (extrait CCP MP 

2013) 

La roue autonome ez-Wheel (prononcer "easy-wheel") propose une solution simple pour tracter des équipements de 

manutention et de transport de charges, des véhicules légers et matériels médicaux. 

 

 
La solution intègre, au sein d’une roue, tous les composants nécessaires à 

la traction : la motorisation électrique, des batteries haute énergie de 

très longue durée de vie, un contrôleur de puissance assurant un pilotage 

optimal et la gestion de la batterie ainsi qu’une interface de commande 

sans fil. La transmission de l’énergie est réalisée par un variateur 

(incorporé à la carte de commande), un moteur brushless, puis un 

réducteur. 

 

Nous nous proposons, dans cette illustration, d’étudier l’implantation de la 

roue autonome sur un fauteuil roulant. Pour ce genre d’application, où il est 

nécessaire de mettre en place deux roues autonomes sur le fauteuil, la 

commande des roues n’est pas aussi simple que pour des applications à une 

seule roue. En effet, en plus de gérer le mouvement d’avance du fauteuil, il 

faut également gérer ses changements de direction. Les deux ez-Wheel 

étant implantées sur chacune des deux roues arrière, le pilotage des deux 

roues est lié afin de maîtriser la direction du fauteuil. Chacune des deux 

roues est alors asservie par l’intermédiaire de capteurs mesurant la 

vitesse de rotation de l’arbre du moteur brushless. 

 

Le fonctionnement du fauteuil motorisé désiré par la société ez-Wheel est 

le suivant : l’utilisateur fournit une commande au système via un joystick. 

La carte de commande génère alors un ordre au variateur qui distribue une 

énergie électrique adaptée au moteur électrique. L’énergie mécanique de 

rotation fournie par le moteur électrique est alors adaptée et transmise 

aux roues. Afin d’assurer l’asservissement en vitesse des roues (et donc du 

fauteuil), des capteurs permettent de mesurer la vitesse de rotation sur 

l’arbre de sortie du moteur. 

 

 

Exigences à satisfaire : 

 

 Stabilité : Marge de phase       ≥ 45° 

   Marge de gain        ≥ 10dB 

 

 Précision : Erreur statique pour une vitesse Vcons en ligne droite   ± 2% 

   Dépassement sur la vitesse      aucun 

 

 Rapidité : Temps de réponse à 5% pour chaque consigne    ≤ 0,3 s 
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Schéma-bloc de l’asservissement en vitesse : 

 

 
 

Où : 

 

 Um  est la tension aux bornes de l’induit (en V) ; 

 Im   est l’intensité circulant dans l’induit (en A) ; 

 Em  est la tension contre-électromotrice (en V) ; 

 Ωm  est la vitesse de rotation de l’arbre moteur (en rad·s−1) ; 

 Cm  est le couple moteur (en N·m) ; 

 Cr   est le couple résistant appliqué sur l’arbre moteur (en N·m) ; 

 Rm  est la résistance de l’induit Rm = 0,18 Ω ; 

 Lm   est l’inductance de l’induit, Lm = 0,8 mH ; 

 J   est la moitié de l’inertie équivalente de l’ensemble ramené à un arbre moteur J = 0,5 kg·m2 ; 

 Ki   est la constante de couple du moteur Ki = 0,2 N·m·A−1 ; 

 Ke   est la constance de force contre-électromotrice Ke = 0,2 V·s·rad−1. 

 Kcapt est le gain du capteur à effet hall –modélisé par un gain pur -  Kcap = 0,2 V·s·rad−1 

 Ka  est le gain de l’adaptateur qui convertir la vitesse de consigne en tension de consigne, Ka = Kcapt 

 Kp  est le gain du correcteur proportionnel avec Kp ≥ 0 

 

 

Remarque : Ke = Ki = Kcapt = Ka  On utilisera la notation Ka dans la suite de l’illustration. 

 

 

On note les fonctions de transfert H1(p) et H2(p) telles que :    m 1 cons 2 rΩ p = H (p).Ω p H (p).C (p)  

 

 

Avec :   

   

p

p

1
2m m

2 2

p p

K

K +1
H p =

J.R J.L
1+ .p + .p

. K +1 . K +1a aK K

 

 

et 

 

   
 

   

m m

2

a p

2
2m m

2 2

p p

R + L .p

K . K +1
H p =

J.R J.L
1+ .p + .p

. K +1 . K +1a aK K
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1 –Structure générale : 

 
 Soit un système S défini par sa fonction de transfert H(p) en boucle ouverte : FTBO 

 

 
 

 

Pour asservir le système, on installe une boucle de retour qui corrige les "erreurs" de la sortie. Il faut donc 

pouvoir comparer la sortie à une valeur de consigne ( comparateur) et corriger éventuellement la valeur de 

l'entrée du système ( correcteur). 

 

 

 

 

 

 

 

 

(t) = écart (improprement appelé "erreur" parfois). 

 

On peut parler alors de système en boucle fermée. 

 

Exemple : un canon fonctionne en boucle ouverte alors qu'un missile téléguidé fonctionne en boucle fermée. 

 

Il n'est pas nécessaire d'asservir un système si son comportement est bien connu et s'il n'y a pas de 

perturbations. Par contre, le bouclage permet de tenir compte de perturbations éventuelles et améliore en 

général les performances du système (les perturbations sont modélisées et considérées comme une 2
ème

 entrée 

du système : on utilise le théorème de superposition pour faire l'étude). 

 

 

2 – Fonction de transfert d'un système asservi : 

 
 
 

        H(p) = 
)p(B).p(A1

)p(A


 

 

 

 

 

On peut toujours se ramener à un système à retour unitaire : 

 

 

                
)p(B

1
.

)p(B).p(A1

)p(B).p(A
)p(H


  

 

       Système réduit de fonction de transfert Hr = 
)p(B).p(A1

)p(B).p(A


 

 

 

On note FTBO la fonction de transfert en boucle ouverte du système soit FTBO(p) = A(p).B(p) et on étudie la 

fonction de transfert du système réduit soit FTBF(p) = 
( )

1 ( )

FTBO p

FTBO p
 

e(t) s(t) 
S 

E(p) S(p) 
H(p) 

(t) 
correcteur 

e(t) s(t) 
Système 

capteur 

consigne 

S(p) 
A(p) 

B(p) 

E(p) 

S(p) 
A(p) B(p) 

E(p) 
1/B(p) 
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3 – Caractérisation des performances des systèmes asservis : 
 

3.1 – Stabilité : 
 

Un système est stable  

- si, écarté de sa position d'équilibre (par exemple par une perturbation), il y revient, 

- si la réponse en régime libre tend vers 0, 

- si la réponse en régime forcé tend vers une constante, 

- si, à une entrée borné, correspond une sortie bornée … 

 

 

3.3.1 – Condition sur les pôles de la fonction de transfert : 

 

Un système est stable si les pôles de la fonction de transfert sont à partie réelle strictement négative. 

 

Attention: si le système est asservi, il s'agit des pôles de la FTBF. 

 

Démonstration : 
D(p)

N(p)
KH(p) avec D(p) = p


 . (p-pi)

i
   

Si on soumet le système à une impulsion, il doit revenir à zéro. 

S(p) = H(p) qu'on décompose en éléments simples : 

 

- si pi est rée l: L-1
)

)pp(

a
(

i

i

i




 = ai t
i-1 tpie qui diverge si pi >0 

- si pi est complexe, alors le conjugué ip de pi est également solution donc H(p) contient 
i

i

pp

a


+ 

i

i

pp

a


 

soit  pi = r + j     et  ai =  + j 

 

L-1
(

22)rp(

2)rp(2








) = 2 e

rt 
cos(.t) - 2 e

rt 
sin(.t) = A e

rt 
cos (.t+) qui diverge si r>0 

 

- si on a un pôle nul (intégrateur), la réponse tend vers une constante (mais pas vers 0)  

 

- si on a plusieurs intégrateurs, la réponse diverge. 

 

Il suffit d'avoir un seul pôle à partie réelle positive ou nulle et la réponse (qui est la somme des réponses) 

diverge. 

 

Pour savoir si les pôles sont à partie réelle strictement négative, il faudrait donc les déterminer !  

On dispose d'un certain nombre de critères qui permettent de savoir si un système est stable sans calculer les 

pôles. 

 

 

3.1.2 – Critère de Routh : (Hors programme, mais intéressant pour faire un parallèle avec la physique) 

 

En effet, ce critère montre que la seule étude du signe des coefficients de l’équation caractéristique n’est pas 

suffisante pour juger la stabilité du système. 

 

Cette condition est suffisante seulement si l’ordre de l’équation caractéristique est inférieur ou égal à 2 ; cette 

condition étant vérifiée dans les problèmes rencontrés en physique, l’étude du signe des coefficients est 

suffisante … mais pas forcément en S2I où l’ordre peut être plus élevé ! 
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 soit   H(p) = 
)p(D

)p(N
 avec D(p) = an p

n
 + … + a0 

 

 

Condition n°1 :  Pour que le système soit stable, il faut que tous les ai soient de même signe par 

exemple positifs. 

 

   (condition nécessaire en général vérifiée pour les systèmes physiques) 

 

 

Condition n°2:  Le système est stable si tous les coefficients de la colonne des pivots sont positifs. 

 

 

Construction de la colonne des pivots : 

 

p
n 

an an-2 an-4 … 

p
n-1 

an-1 an-3 an-5 … 

p
n-2 

1n

3nn2n1n

a

aaaa



 
 

1n

5nn4n1n

a

aaaa



 
 … … 

 colonne des pivots    

 
 

NOTA :  le nombre de changements de signe dans la colonne des pivots est égal au nombre de pôles à partie réelle 

  positive. 

 
 
 

Le critère de Routh permet donc d’écrire des inégalités en imposant que tous les coefficients de la colonne des 

pivots soient de même signe ; en général, ces inégalités permettent de définir des intervalles (ou plage de 

valeur) pour lesquels le système sera stable ; par exemple, le système sera stable si le gain du correcteur 

proportionnel KP vérifie :  1 2;PK K K . 

 

Par contre, ce critère ne donne aucune information sur la marge de sécurité relative à la stabilité ! 
 

 

 

3.1.3 – Critères de Revers (critère graphique) : 

 

 

 

 

 

 

 

Si ce système est stable en boucle ouverte, 

      alors la stabilité ne dépend que des pôles du dénominateur 

      en boucle fermée à savoir les pôles de : 1 + H(p). 

 

 

Il faut donc résoudre  H(p) = -1 :  le point (–1) du plan complexe (module = 1 et argument = -180°) est 

appelé point critique.   

S(p) 
H(p) 

E(p)  
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 dans le plan de Bode : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 dans le plan de Black : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.4 – Causes d'instabilité : 

 

 le bouclage, 

 le système devient instable quand le gain de la boucle ouverte augmente, 

 influence des retards. 

 

 

 

Analyse de l’influence des retards : 

 

 

soit  H'(p) = e
-p

 . H(p)  

 

 

| H'(p) | = | H(p) |   et   ' =  -  

 

Un retard introduit un déphasage supplémentaire donc 

tout retard est source d'instabilité. 

Le système est stable en boucle fermée si, 

 

en parcourant le lieu de transfert de la FTBO dans le 

sens des  croissants, on laisse le point critique à 

droite. 

 

 
NOTA: les systèmes ayant une FTBO du 1

er
 ou 2

ème
 ordre sont 

toujours stables. 

 

GdB 

-180° 

 

- 

G 

G' 

 

GdB 

-180° 

stable 

instable 

K 

Le système est stable en boucle fermée si, pour la 

pulsation correspondant à  = -180°, la courbe de gain 

de la FTBO passe au-dessous du niveau 0 dB. 

 

Donc si 

pour   = -180°,  G > 0 dB 

 

ou 

 

pour  G = 0 dB ,   < -180°, 

 

alors le système est instable. 

 

GdB 

-180° 

stable 

instable 

K 

 

 -180° 

-180° 
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3.1.5 – Degré de stabilité : (ou marge de sécurité) 

 

Si le système est à la limite de stabilité, la moindre dérive des paramètres (dûe à la température, l'usure, …) 

peut entraîner l'instabilité  il faut donc prévoir des marges de sécurité par rapport au point critique (–1). 

 

 marge de gain Mg : on trace le lieu de la FTBO. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dans les lieux de Bode et Black, la marge de gain est l’opposé de la valeur du gain pour la pulsation critique 

(pour laquelle  = -180°)  

 Mg = - 20 log |H(j -180°)| 
 

On prend en général une marge de gain de 6 à 15dB. 

 

Dans la pratique, on translate la courbe de gain vers la bas jusqu'à obtenir cette marge de sécurité : ceci revient 

à diminuer le gain statique de la FTBO. 

 

 marge de phase M : c'est la différence entre 180° et la phase du point de la FTBO de module 1 donc  

 

 M = 180° + arg (H(j1)) 

 

avec 1 = pulsation pour laquelle | H(j1)| = 1 (soit 0 dB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On prend en général une marge de phase de 40° - 45°. 

 

GdB 

-180° 

 

 -180° 

-180° 

Mg 

 

GdB 

-180° 

Mg 

 

GdB 

-180° 

 

 

1 

M 

 

GdB 

-180° 

M 
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Etude de la stabilité de la roue autonome ez-Wheel 

La consigne est la perturbation ayant la même équation caractéristique (les fonctions de transfert H1 et H2 ont le 

même dénominateur), il est inutile d’étudier la stabilité pour ces 2 entrées ; 

nous allons donc supposer que Cr(p) = 0. 

Ainsi le schéma-bloc devient : 

 
 

Déterminons la FTBO pour appliquer le critère de Revers :  (rappel : Ke = Ki = Kcapt = Ka) 

 

 
2

p

2

K . K
FTBO p =

K . .( . ) 1+2,25.p +0,01.p²

a p

a m m

K

J p R L p


 
 

 

 1

0

1 1
10 . 11,25 :

1 2,25. 1 0,004.
prad s et m FTBO p K

p p
     

 
 

 

Cette fonction de transfert est d’ordre 2, le système est donc stable ; mais quelle est la marge de sécurité ? 

 

 

Marge de gain : objectif : 10gM dB  

 

La phase de la FTBO tend vers – 180° (sans jamais l’atteindre), deux conclusions sont donc possibles : 

   - la marge de gain est non définie 

 ou  - la marge de gain tend vers l’infini (puisque le gain tend vers moins l’infini) 

 

Cette exigence est donc vérifiée. 

 

 

Marge de phase : objectif : 45M    

 

Il faut donc déterminer la pulsation pour laquelle   1Arg FTBO j = 135°   

1

2

1

2,25.
arctan 135

1 0,01.


  

 
  soit  2

1 12,25. 0,01. 1     

 

On trouve donc : 1

1 225,4 . Prad s K   

 

Cette exigence (de marge de phase) sera vérifiée si : 

     
2 22

1 1 120.log FTBO j 0 20.log 20.log 1 0.01. 2,25.PK         

 

Soit finalement : 717PK   

 

En conclusion, les 2 critères de stabilité exigés au cahier des charges seront satisfaits si 717PK  . 
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3.2 – Précision statique : 

 

 

  

 

- précision statique en régime permanent = (t) lim
t




 

- précision dynamique en régime transitoire (pas au programme de CPGE). 

 

L’étude de la précision se ramène toujours à l’étude de la sortie du comparateur où la grandeur étudiée est la 

différence entre : 

 l’entrée et la sortie si elles sont de même nature (retour unitaire), 

 l’entrée et une image de la sortie de même nature que l’entrée (retour non unitaire). 

 

En CPGE, le programme se limitant à la précision statique, donc en régime permanent, il faut toujours étudier 

cet écart quand t tend vers l’infini. 

Suivant le signal d’entrée choisi, l’étude permettra d’analyser la précision en position (entrée en échelon) ou la 

précision en vitesse (entrée en rampe). 

 

3.2.1 – Ecart statique en position (ou erreur indicielle) notée s : e(t) = e0 u(t) 

 

 (p) = E(p) – S(p) = E(p)(1 - 
( )

1 ( )

H p

H p
) = 

( )

1 ( )

E p

H p
 = 0

(1 ( ))

e

p H p
 

 

 s = (t) lim
t




= (p)plim
0p




= 0

0
lim

1 ( )p

e

H p 
 

 

au voisinage de 0,   H(p)  
p

K
,  étant la classe de la FTBO 

 

  = 0 : s =  
K1

e0


 donc la précision augmente si le gain de la FTBO augmente. 

  > 0 : s = 0    donc, si on a au moins un intégrateur dans la FTBO, le système est précis en position. 

 

 

3.2.2 – Ecart statique en vitesse (ou erreur de traînage ou de poursuite) notée v : e(t) = a t u(t) 

 

 

v = 
0p

lim


( )

1 ( )

E p

H p
 = 

0p
lim


)
p

K
1(p

a




 

 

  = 0 : V   

 

  = 1 : V = 
K

a
  donc la précision (avec un intégrateur) augmente si le gain de la FTBO augmente  

 

  > 1 : V = 0    donc, si on a au moins deux intégrateurs dans la FTBO, le système est précis en 

poursuite. 

 

Attention : dans certains ouvrages, s est appelée précision statique et v précision dynamique. 

S(p) 
H(p) 

E(p)  
On caractérise la précision par  l'écart (parfois appelé "erreur") 

entre la consigne e(t) et la sortie s(t):  (t) = e(t) – s(t) 

e0 

t 

s s(t) 

e(t) 

t 

v 

s(t) 
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Etude de la précision de la roue autonome ez-Wheel 

Schéma-bloc de l’asservissement en vitesse : 

 
On note les fonctions de transfert H1(p) et H2(p) telles que :    m 1 cons 2 rΩ p = H (p).Ω p H (p).C (p)  

 

Avec :   

   

p

p

1
2m m

2 2

p p

K

K +1
H p =

J.R J.L
1+ .p + .p

. K +1 . K +1a aK K

  et   
 

   

m m

2

a p

2
2m m

2 2

p p

R + L .p

K . K +1
H p =

J.R J.L
1+ .p + .p

. K +1 . K +1a aK K

 

 

Objectifs : 

   Erreur statique pour une vitesse Vcons en ligne droite   ± 2% 

   Dépassement sur la vitesse      aucun 

 

Etude de la précision vis-à-vis de la consigne : (donc on suppose rC (p)=0 ) 

  p0 0
1 1 1

0 0
1

0

p

K
lim . 1 ( ) . lim ( )

1 ( ) 1+ 2,25.p +0,01.p²

1 K

s
p p

p H p avec FTBO p
p FTBO p


 

 
   








 

Ce calcul est inutile puisque la classe de la FTBO1 étant nulle, le résultat est connu : 
1 Gain statiqueFTBO

Amplitudeéchelon


 

Pour satisfaire cette exigence, Kp doit donc vérifier : 
p

p

1
0,0 K

1
92 4

K
 


 

 

Etude de la précision vis-à-vis de la perturbation :  (donc on suppose (p)=0cons ) 

2
0

lim . ( )s cons
p

p p


     1 cons
0

( ) lim . H (p). Ω pm
p

p p


   

 

   
 

2 r

m m

a p m 0
0 20 2m m a p

2 2

p p

H (p).C (p)

R + L .p

K . K +1 R .
lim .

J.R J.L K . K +11+ .p + .p
. K +1 . K +1

p

a a

C
C

K K







  
 

Remarque : 

 ce calcul revient à étudier la limite de la sortie en régime permanent avec un échelon de perturbation ; 

 puisque la consigne est nulle, il faudrait idéalement que la sortie tende vers zéro … et, dans ce cas, nous 

 pourrions conclure que la perturbation n’a pas d’influence sur la précision en régime permanent. 

Pour satisfaire cette exigence, Kp doit donc vérifier : 
 

m

p

p2

a

R
0,02 K 2

K +1
4

K .
2   
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Etude de l’exigence de dépassement : 

L’équation caractéristique étant d’ordre 2, il faut vérifier que le facteur d’amortissement soit supérieur ou égal à 1.  

   
2

2 2
1

1 1

m m

p p

J R J L
p p

K K K K
 

 
 donne par identification : 

 

 
0

1
. ;

2. . 1

p m
a

m
a m p

K R
K m

J L K L J K



 


 

 

Soit : 
22,5

1 505,25
1

p

p

m K
K

   


 

 

En conclusion, l’exigence de précision sera satisfaite pour :  224 505,25pK   

 

 

 

3.3 – Rapidité : 
 

Elle est définie par le temps de réponse du système soumis à un échelon d'amplitude e0. En général, on prend le 

temps de réponse à 5%. 

1
er

 ordre : le temps de réponse diminue si on boucle le système :
p1

K
FTBO


      

p
K1

1

K1

K

FTBF







  

d'où  tr BO = 3     t'r BF = 3 (/(1+K)) 

 

et  tr diminue si K augmente 

 

 

2
nd

 ordre : le temps de réponse dépend du coefficient d'amortissement m qui diminue quand on boucle le 

système. Le temps de réponse peut donc augmenter ou diminuer suivant la valeur de m :  

 

Si les dépassements sont autorisés, le temps de réponse à 5% est minimum pour m = 0,69. 

Cette valeur de m est trouvée en vérifiant que la premier dépassement vaut 5% : 
2

.

1 0,05

m

me



   

Remarque : attention de ne pas confondre 0,69 et 
2

0,71
2

 qui correspond à l’existence d’une résonance ! 

 

Si les dépassements ne sont pas autorisés, le temps de réponse à 5% est minimum pour m = 1. 

 

Le temps de réponse d’un 2
nd

 ordre est 

généralement déterminé à l’aide de la 

courbe ci-contre : 

 

2 valeurs particulières à connaitre : 

 

Si m = 0,69 :   𝒕𝒓𝟓% ≈
𝟑

𝝎𝟎
 

 

Si m = 1 :   𝒕𝒓𝟓% ≈
𝟓

𝝎𝟎
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Etude de la rapidité de la roue autonome ez-Wheel 

Schéma-bloc de l’asservissement en vitesse : 

 
 

 

On note les fonctions de transfert H1(p) et H2(p) telles que :    m 1 cons 2 rΩ p = H (p).Ω p H (p).C (p)  

 

 

Avec :   

   

p

p

1
2m m

2 2

p p

K

K +1
H p =

J.R J.L
1+ .p + .p

. K +1 . K +1a aK K

  et   
 

   

m m

2

a p

2
2m m

2 2

p p

R + L .p

K . K +1
H p =

J.R J.L
1+ .p + .p

. K +1 . K +1a aK K

 

 

 

L’équation caractéristique est donc d’ordre 2 : 

 

   
2

2 2
1

1 1

m m

p p

J R J L
p p

K K K K
 

 
 donne par identification : 

 

 
0

1
. ;

2. . 1

p m
a

m
a m p

K R
K m

J L K L J K



 


 

 

 

Objectif : 

 

  Temps de réponse à 5%  ≤ 0,3 s 

 

 

Nous avons trouvé précédemment :  

 

224 505,25pK      avec     
 

0

22,5
10. 1 ;

1
p

p

K m
K

   


 

 

 

Pour Kp = 224 :  m = 1.5   et  ω0 = 150 rad.s-1   soit :  tr5% ≈ 0.053 s 

 

Pour Kp = 505 :  m = 1   et  ω0 = 225 rad.s-1  soit :  tr5% ≈ 0.02 s 

 

 

 

Donc cette exigence de rapidité sera satisfaite pour 224 505,25pK   
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4 – Influence des pôles sur la réponse du système : 
 

Dans le cas d’une réponse impulsionnelle, l’équation de la sortie dans le domaine symbolique peut s’écrire : 

 

S(p) = 1 2

1 2

( )( )...( )

( )( )...( )

m

n

K p z p z p z

p p p p p p

  

  
 avec zi les zéros et pi les pôles. 

 

Après décomposition en éléments simples, on obtient : 

 

S(p) = 1 2 1 1

1 2 1 1 1 1

... ...
. .

K K L L

p p p p p a j b p a j b
    

     
 

avec  pi les pôles réels  et  ai ± j.bi les pôles complexes conjugués 

 

Soit dans le domaine temporel après transformée inverse : 

 

s(t) = 1 2 1. . .

1 2 1 1. . ... 2. . .cos( . ) ...p t p t a tK e K e L e b t     

 

Ainsi : 

 

 Les parties réelles des pôles (réels ou complexes) se 

retrouvent dans les termes exponentiels, et elles 

permettent de caractériser l’amortissement, 

 

 

 Les parties imaginaires des pôles complexes 

conjugués se retrouvent dans les pulsations des 

termes oscillants, et elles permettent de caractériser 

la rapidité (fréquence des oscillations). 

 

 

On retrouve le critère de stabilité (parties réelles des pôles strictement négatives pour que les termes 

exponentiels soient décroissants), et la réponse présentera un caractère oscillant s’il existe des pôles complexes. 

 

La figure ci-dessous montre la contribution d’un pôle sur la réponse en fonction de sa place dans le plan 

complexe : 

 

 

Re 

Im 

Instable Stabl

e 

jbi 

-jbi 

ai 

+ amorti - amorti 

+ rapide 

- rapide 
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La réponse d’un système linéaire est donc déterminée par la position de ses pôles dans le plan complexe : un 

système du 10
ème

 ordre a 10 pôles et sa réponse s(t) à une impulsion comporte au maximum 10 termes. 

 

 

Lorsque le temps s’écoule, ces termes « s’éteignent » les uns après les autres, et les termes de la réponse qui 

durent le plus longtemps correspondent aux pôles les plus proches de l’origine.  

 

On appelle ces pôles les pôles dominants et 

ce sont eux qui fixent la forme de la réponse. 

 

Les pôles plus éloignés ne jouent que sur la 

forme du début du régime transitoire : 

 

 

 

 

 

 

Conséquences pratiques : 

Un système d’ordre élevé a, sauf exception, un ou deux pôles dominants et se comporte donc comme un 1
er

 ou 

un 2
nd

 ordre ; on peut donc simplifier la transmittance d’un système d’ordre élevé en ne conservant que le ou les 

pôles dominants. 

Un pôle peut être négligé dès qu’il est 3 ou 4 fois supérieur au précédent ; négliger les pôles éloignés de 

l’origine revient, sur le diagramme de Bode, à négliger les fréquences de coupure élevées. 

 

Exemple : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

Le système A est caractérisé par : 

- système du second ordre, 

- 2 pôles complexes conjugués, 

- dépassement 68%, 

- pic à 1,5 seconde. 

Le système B est caractérisé par : 

-  système du cinquième ordre, 

- 2 pôles dominants identiques aux pôles de A, 

- dépassement 56%, 

- pic à 2,1 seconde. 
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Etude de l’influence du pôle dominant de la roue autonome ez-Wheel 

La consigne est la perturbation ayant la même équation caractéristique (les fonctions de transfert H1 et H2 ont le 

même dénominateur), il est inutile d’analyser pour ces 2 entrées ; 

nous allons donc supposer que Cr(p) = 0.  

Ainsi le schéma-bloc devient : 

 
 
Déterminons la FTBF :  (rappel : Ke = Ki = Kcapt = Ka) 

 

  p

p

K
FTBF p =

1 K +2,25.p+0,01.p²
 

Prenons Kp = 49 : 

 

 
49 0,98

FTBF p =
50+2,25.p+0,01.p²

1 . 1
25 200

p p

   
    

   

 

 

Le pôle dominant est donc -25. 

 

Déterminons le temps de réponse à 5% en considérant les 2 pôles puis seulement le pôle dominant : 

 

 
0,98

FTBF p =

1 . 1
25 200

p p   
    

   

  m = 3 et ω0 = 71 rad.s
-1

   soit : tr5% ≈ 0.13 s  

 
0,98

FTBF p

1 . 1
25 200

p p

   
    

   

  constante de temps : τ = 0,04 s  soit : tr5% ≈ 0.12 s 

 

       

 
0,98

FTBF p =

1 . 1
25 200

p p   
    

   

  
0,98

FTBF p

1 . 1
25 200

p p

   
    

   

 


