Feuille d'exercices n°06

Exercice 1 (***)

Soient a, b > 0.

1. Justifier l'existence pour x réel de

$$F(x) = \int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} \cos(xt) dt$$

- 2. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} puis calculer F'.
- 3. En déduire une expression de F(x) pour x réel.

Corrigé: 1. On pose $\forall (x,t) \in X \times I$ $f(x,t) = \frac{e^{-at} - e^{-bt}}{\iota} \cos(xt)$

avec X = \mathbb{R} et I =]0; + ∞ [. Pour $x \in X$, on a $t \mapsto f(x,t) \in \mathscr{C}_{pm}(I,\mathbb{R})$ par théorèmes généraux puis

$$f(x,t) = \frac{1 - at - (1 - bt) + o(t)}{t} \cos(xt) = (a - b + o(1)) \cos(xt) \xrightarrow[t \to 0]{} a - b$$

et par croissances comparées

$$f(x,t) \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$$

On en déduit l'intégrabilité de $t \mapsto f(x,t)$ sur I et par conséquent

La fonction F est bien définie sur \mathbb{R} .

- 2. Vérifions les hypothèses du théorème de régularité \mathscr{C}^1 sous l'intégrale.
- Pour $x \in X$, on a $t \mapsto f(x,t) \in \mathscr{C}_{pm}(I,\mathbb{R})$ et intégrable d'après l'étide précédente. Pour $t \in I$, on a $x \mapsto f(x,t) \in \mathscr{C}^1(X,\mathbb{R})$ par théorèmes généraux. Par dérivation, on trouve

$$\forall (x,t) \in X \times I$$
 $\frac{\partial f}{\partial x}(x,t) = (e^{-bt} - e^{-at})\sin(xt)$

- Pour $x \in X$, on a $t \mapsto \frac{\partial f}{\partial x}(x,t) \in \mathscr{C}_{pm}(I,\mathbb{R})$ par théorèmes généraux.
- Domination : On a

$$\forall (x,t) \in X \times I$$
 $\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \varphi(t) \text{ avec } \varphi(t) = e^{-at} + e^{-bt}$

On a $\varphi \in \mathscr{C}_{pm}(I, \mathbb{R}_+)$ et φ intégrable sur I puisque $\int_0^{+\infty} \varphi(t) dt = \left[-\frac{e^{-at}}{a} - \frac{e^{-bt}}{b} \right]_0^{+\infty} = \frac{1}{a} + \frac{1}{b}$.

Ainsi

$$F \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$$

Soit x réel. Par dérivation sous l'intégrale, il vient

$$F'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x,t) dt = \int_0^{+\infty} \left[e^{-bt} - e^{-at} \right] \sin(xt) dt$$

Par convergence absolue de $\int_0^{+\infty} e^{-(b-ix)t} dt$ et $\int_0^{+\infty} e^{-(a-ix)t} dt$, il vient

$$F'(x) = \text{Im} \int_0^{+\infty} \left[e^{-(b-ix)t} - e^{-(a-ix)t} \right] dt = \text{Im} \left(\frac{1}{b-ix} - \frac{1}{a-ix} \right)$$

D'où

$$\forall x \in \mathbb{R} \qquad F'(x) = \frac{x}{b^2 + x^2} - \frac{x}{a^2 + x^2}$$

3. Par intégration il vient

$$\forall x \in \mathbb{R}$$
 $F(x) = \frac{1}{2} \ln \left(\frac{b^2 + x^2}{a^2 + x^2} \right) + \alpha \text{ avec } \alpha \in \mathbb{R}$

Pour déterminer $\lim_{x\to +\infty} \mathbf{F}(x)$, on emploie une technique à la « Riemann-Lebesgue ». On pose

$$\forall t > 0$$
 $\varphi(t) = \frac{e^{-at} - e^{-bt}}{t}$

Les fonctions φ et $t\mapsto \frac{\sin(xt)}{x}$ sont de classe \mathscr{C}^1 sur I avec

$$\varphi(t) \frac{\sin(xt)}{x} \xrightarrow[t \to 0]{} 0 \quad \text{et} \quad \varphi(t) \frac{\sin(xt)}{t} \xrightarrow[t \to +\infty]{} 0$$

Ainsi, d'après le théorème d'intégration par parties, les intégrales $\int_0^{+\infty} \varphi(t) \cos(xt) dt$ et $\int_0^{+\infty} \varphi'(t) \frac{\sin(xt)}{x} dt$ sont de même nature donc convergentes et on a

$$F(x) = \int_0^{+\infty} \varphi(t) \cos(xt) dt = \left[\varphi(t) \frac{\sin(xt)}{x} \right]_0^{+\infty} - \frac{1}{x} \int_0^{+\infty} \varphi'(t) \sin(xt) dt$$

Par dérivation

$$\forall t > 0 \qquad \varphi'(t) = \frac{t \left(-a e^{-at} + b e^{-bt}\right) - e^{-at} + e^{-bt}}{t^2}$$

d'où

$$\varphi'(t) \underset{t \to 0}{=} \frac{t^2(a^2-b^2)/2 + \operatorname{o}(t^2)}{t^2} \xrightarrow[t \to 0]{} \frac{a^2-b^2}{2} \quad \text{et} \quad \varphi'(t) \underset{t \to +\infty}{=} \operatorname{o}\left(\frac{1}{t^2}\right)$$

Ainsi, la fonction φ' est intégrable sur I et par inégalité triangulaire

$$\left| \int_0^{+\infty} \varphi'(t) \sin(xt) \, dt \right| \leqslant \int_0^{+\infty} |\varphi'(t)| \, dt$$

Par suite

$$F(x) = \frac{O(1)}{x} \xrightarrow[x \to +\infty]{} 0$$

On en déduit $\alpha = 0$ et finalement

$$\forall x \in \mathbb{R}$$
 $F(x) = \frac{1}{2} \ln \left(\frac{b^2 + x^2}{a^2 + x^2} \right)$

Exercice 2 (***)

On pose

$$\forall x \in \mathbb{R}$$
 $F(x) = \int_0^{\frac{\pi}{2}} \frac{\operatorname{Arctan}(x \tan(t))}{\tan(t)} dt$

- 1. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} .
- 2. En déduire une expression simple de F(x) pour x réel.

3. En déduire
$$\int_0^{\frac{\pi}{2}} \frac{t}{\tan(t)} dt = \frac{\pi}{2} \ln(2)$$
 et $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt = -\frac{\pi}{2} \ln(2)$

Corrigé: 1. On pose
$$\forall (x,t) \in X \times I$$
 $f(x,t) = \frac{\operatorname{Arctan}(x \tan(t))}{\tan(t)}$

avec $X = \mathbb{R}$ et $I = \left[0, \frac{\pi}{2}\right]$. On vérifie :

• Pour $x \in X$, on a $t \mapsto f(x,t) \in \mathscr{C}_{pm}(I,\mathbb{R})$ avec

$$f(x,t) \xrightarrow[t\to 0]{} x$$
 et $f(x,t) \xrightarrow[t\to \frac{\pi}{2}]{} 0$

La fonction est prolongeable par continuité en 0 et $\frac{\pi}{2}$ donc intégrable sur I.

• Pour $t \in I$, on a $x \mapsto f(x,t) \in \mathscr{C}^1(X,\mathbb{R})$. Par dérivation, on trouve

$$\forall (x,t) \in X \times I$$
 $\frac{\partial f}{\partial x}(x,t) = \frac{1}{1 + (x \tan(t))^2}$

- Pour $x \in X$, on a $t \mapsto \frac{\partial f}{\partial x}(x,t) \in \mathscr{C}_{pm}(I,\mathbb{R})$.
- Domination : On a

$$\forall (x,t) \in X \times I$$
 $\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \varphi(t) \text{ avec } \varphi(t) = 1$

La dominante φ est clairement continue par morceaux, intégrable sur I. Ainsi

$$F \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$$

2. La fonction F est clairement impaire. On restreint l'étude à $x \ge 0$. Par dérivation sous l'intégrale, on trouve

$$\forall x \geqslant 0 \qquad F'(x) = \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{1 + (x\tan(t))^2}$$

Le changement de variable $u = \tan(t)$ donne

$$\forall x \ge 0$$
 $F'(x) = \int_0^{+\infty} \frac{du}{(1+u^2)(1+x^2u^2)}$

Par décomposition en éléments simples, pour $x \neq 1$, on obtient

$$F'(x) = \frac{1}{1 - x^2} \int_0^{+\infty} \left[\frac{1}{1 + u^2} - \frac{x^2}{1 + x^2 u^2} \right] du = \frac{\pi}{2} \frac{1}{1 + x}$$

et l'égalité vaut aussi pour x=1 puisque F est de classe \mathscr{C}^1 sur $\mathbb R$ donc F' continue en 1. Par intégration, on trouve

$$\forall x \ge 0$$
 $F(x) = F(0) + \int_0^x F'(v) dv = \frac{\pi}{2} \ln(1+x)$

Ainsi

$$\forall x \in \mathbb{R} \qquad F(x) = \begin{cases} \frac{\pi}{2} \ln(1+x) & \text{si } x \ge 0 \\ -\frac{\pi}{2} \ln(1-x) & \text{si } x \le 0 \end{cases}$$

Remarque: Pour faire efficacement la décomposition en éléments simples, on peut considérer

$$\frac{1}{(1+v)(1+x^2v)} = \frac{x^2v + 1 - x^2(v+1)}{(1+v)(1+x^2v)} \frac{1}{1-x^2}$$

et l'appliquer en $v = u^2$.

3. On a Arctan $(\tan(t)) = t$ pour $t \in \left[0; \frac{\pi}{2}\right[$ d'où

$$\int_0^{\frac{\pi}{2}} \frac{t}{\tan(t)} \, dt = F(1) = \frac{\pi}{2} \ln(2)$$

Les fonctions $t \mapsto t$ et $t \mapsto \ln(\sin(t))$ sont de classe \mathscr{C}^1 sur $\left[0; \frac{\pi}{2}\right]$ avec

$$t \ln(\sin(t)) = t \ln(t + o(t)) \xrightarrow[t \to 0]{} 0$$
 et $t \ln(\sin(t)) \xrightarrow[t \to \frac{\pi}{2}]{} 0$

D'après le théorème d'intégration par parties, les intégrales $\int_0^{\frac{\pi}{2}} \frac{t}{\tan(t)} dt$ et $\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$ sont de même nature donc convergentes et on a

$$\int_0^{\frac{\pi}{2}} \frac{t}{\tan(t)} dt = \underbrace{[t \ln(\sin(t))]_0^{\frac{\pi}{2}}}_{=0} - \int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$$

Ainsi

$$\int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt = -\frac{\pi}{2} \ln(2)$$

Exercice 3 (****)

On pose ∀a

$$\forall x \geqslant 0$$
 $F(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$ $G(x) = \int_0^{+\infty} \frac{\sin(t)}{x+t} dt$

- 1. Montrer que F et G sont définies, continues sur \mathbb{R}_+ .
- 2. Montrer que F et G sont de classe \mathscr{C}^2 sur] 0; $+\infty$ [et qu'elles sont toutes deux solutions de l'équation

$$y'' + y = \frac{1}{x}$$

3. En déduire la valeur de l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Corrigé: 1. La continuité de F sur \mathbb{R}_+ est traitée dans l'exercice 3 de la feuille 7. Soit $x \ge 0$. On a $t \mapsto \frac{1}{x+t}$ et $t \mapsto 1 - \cos(t)$ de classe \mathscr{C}^1 avec

$$-\frac{1-\cos(t)}{x+t} \xrightarrow[t\to 0]{} 0 \quad \text{et} \quad -\frac{1-\cos(t)}{x+t} \xrightarrow[t\to +\infty]{} 0$$

 $Ainsi, \, les \, \, int\'egrales$

$$\int_0^{+\infty} \frac{\sin(t)}{x+t} dt \quad \text{et} \quad \int_0^{+\infty} \frac{1 - \cos(t)}{(x+t)^2} dt$$

sont de même nature. La seconde converge puisque

$$\frac{1 - \cos(t)}{(x+t)^2} \underset{t \to 0}{=} \mathcal{O}(1) \quad \text{et} \quad \frac{1 - \cos(t)}{(x+t)^2} \underset{t \to +\infty}{=} \mathcal{O}\left(\frac{1}{t^2}\right)$$

Par conséquent, on a l'égalité

$$\int_0^{+\infty} \frac{\sin(t)}{x+t} \, dt = \underbrace{\left[\frac{1-\cos(t)}{x+t}\right]_0^{+\infty}}_{=0} + \int_0^{+\infty} \frac{1-\cos(t)}{(x+t)^2} \, dt$$

Avec la domination

$$\forall (x,t) \in \mathbb{R}_+ \times] \ 0; +\infty [\qquad 0 \leqslant \frac{1 - \cos(t)}{(x+t)^2} \leqslant \frac{1 - \cos(t)}{t^2}$$

on établit sans difficulté la continuité de la nouvelle écriture de G et on conclut

Les fonctions F et G sont définies, continues sur \mathbb{R}_+ .

2. Une domination locale permet d'établir sans difficulté que $F \in \mathcal{C}^2(]0; +\infty[,\mathbb{R})$. Pour x > 0, on obtient par changement de variable

$$\int_0^{+\infty} \frac{\sin(t)}{x+t} dt \quad \text{et} \quad \int_x^{+\infty} \frac{\sin(u-x)}{u} du = \int_x^{+\infty} \frac{\cos(x)\sin u - \sin(x)\cos(u)}{u} du$$

Les intégrales $A(x) = \int_x^{+\infty} \frac{\sin u}{u} du$ et $B(x) = \int_x^{+\infty} \frac{\cos(u)}{u} du$ convergent (voir exercice 4, question 2, feuille n°2). Ainsi, par linéarité

$$\forall x > 0$$
 $G(x) = \cos(x)A(x) - \sin(x)B(x)$

Les intégrandes des fonctions A et B sont continues et même de classe \mathscr{C}^1 donc A et B sont de classe \mathscr{C}^1 avec A' et B' de classe \mathscr{C}^1 d'où A, B de classe \mathscr{C}^2 et par conséquent

Les fonctions F et G sont de classe
$$\mathscr{C}^2$$
 sur] 0 ; $+\infty$ [.

Par dérivation sous l'intégrale, il vient

$$\forall x > 0 \qquad F''(x) + F(x) = \int_0^{+\infty} \frac{t^2 e^{-xt}}{1 + t^2} dt + \int_0^{+\infty} \frac{e^{-xt}}{1 + t^2} dt = \int_0^{+\infty} e^{-xt} dt$$

et avec

$$\forall x > 0$$
 $A'(x) = -\frac{\sin(x)}{x}$ et $B'(x) = -\frac{\cos(x)}{x}$

on trouve finalement

Les fonctions F et G vérifient
$$y'' + y = \frac{1}{x} \operatorname{sur} [0; +\infty[$$
.

3. La fonction F - G est donc solution de l'équation homogène y'' + y = 0 et par conséquent, il existe a, b réels tels que $F - G = a \cos + b \sin$. Or, on a (convergence assurée)

$$\forall x > 0$$
 $0 \leqslant F(x) \leqslant \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$

et $G(x) = \cos(x)A(x)\sin(x)B(x)$ avec A(x) = o(1) et B(x) = o(1)

Par suite

$$F(x) \xrightarrow[x \to +\infty]{} 0$$
 et $G(x) \xrightarrow[x \to +\infty]{} 0$

donc la fonction $a\cos +b\sin$ admet une limite en $+\infty$ ce qui prouve a=b=0. Ainsi, on a

$$\forall x > 0$$
 $F(x) = G(x)$

Par continuité de F et G en 0, il vient

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = G(0) = \lim_{x \to 0^+} G(x) = \lim_{x \to 0^+} F(x) = F(0) = \int_0^{+\infty} \frac{dt}{1 + t^2}$$

Et on conclut

$$\int_0^{+\infty} \frac{\sin(t)}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 4 (****)

Soit $f \in \mathscr{C}^0([0;1],\mathbb{R}_+^*)$. On pose

$$\forall x > 0$$
 $F(x) = \int_0^1 f(t)^x dt$

Déterminer

$$\lim_{x \to 0^+} F(x)^{\frac{1}{x}} \quad \text{et} \quad \lim_{x \to +\infty} F(x)^{\frac{1}{x}}$$

Corrigé : On pose $\forall (x,t) \in X \times I$ $g(x,t) = f(t)^x = \exp[x \ln f(t)]$

avec X = I = [0; 1]. Montrons que $F \in \mathcal{C}^1([0; 1], \mathbb{R})$.

- Pour tout $x \in X$, la fonction $t \mapsto g(x,t)$ est intégrable sur I comme fonction continue sur un segment.
- Pour tout $t \in I$, d'après les théorèmes généraux, la fonction $x \mapsto g(x,t)$ est de classe \mathscr{C}^1 sur X.
- Soit $x \in X$. La fonction $t \mapsto \frac{\partial g}{\partial x}(x,t) = \ln f(t) \exp[x \ln f(t)]$ est continue sur I d'après les théorèmes généraux.
- Domination : On a

$$\forall (x,t) \in X \times I$$
 $\left| \frac{\partial g}{\partial x}(x,t) \right| \leqslant \varphi(t) \text{ avec } \varphi(t) = |\ln f(t)| \exp |\ln f(t)|$

La fonction φ est continue donc intégrable sur le segment I. Par régularité \mathscr{C}^1 sous l'intégrale, on conclut

La fonction F est de classe
$$\mathscr{C}^1$$
 sur $[0;1]$ et $F'(x) = \int_0^1 \ln f(t) \exp[x \ln f(t)] dt$ pour $x \in [0;1]$.

Ensuite, pour $x \in [0, 1]$, il vient

$$F(x)^{1/x} = \exp\left[\frac{\ln F(x)}{r}\right] = \exp\left[\frac{\ln F(x) - \ln F(0)}{r - 0}\right]$$

On voit donc apparaître naturellement un taux d'accroissement dans l'expression à étudier. Par conséquent, comme F est dérivable, il vient par continuité de la fonction exponentielle

$$F(x)^{1/x} = \exp\left[\frac{\ln F(x) - \ln F(0)}{x - 0}\right] \xrightarrow[x \to 0^+]{} \exp\left[\frac{F'(0)}{F(0)}\right]$$

On conclut

$$\boxed{ F(x)^{1/x} \xrightarrow[x \to 0^+]{} \exp \left[\int_0^1 \ln f(t) dt \right] }$$

Avec $f(t) \leq ||f||_{\infty}$, on obtient sans difficulté $F(x)^{1/x} \leq ||f||_{\infty}$. Soit $\varepsilon > 0$. Par continuité de f, sa borne supérieure sur le segment [0;1] est atteinte et par conséquent il existe un segment $[a;b] \subset [0;1]$ avec b > a tel que

$$\forall t \in [a;b]$$
 $||f||_{\infty} - \varepsilon \leqslant f(t)$

d'où

$$\int_{a}^{b} (\|f\|_{\infty} - \varepsilon)^{x} dt \leqslant \int_{a}^{b} f(t)^{x} dt \leqslant F(x)$$

puis

$$(b-a)^{1/x} (\|f\|_{\infty} - \varepsilon) \leqslant F(x)^{1/x}$$

Comme $(b-a)^{1/x} \xrightarrow[x \to +\infty]{} 1$, il existe un seuil A > 0 tel que

$$\forall x \geqslant A$$
 $(b-a)^{1/x} (\|f\|_{\infty} - \varepsilon) \geqslant \|f\|_{\infty} - 2\varepsilon$

$$\forall \varepsilon > 0 \quad \exists \mathbf{A} > 0 \quad | \quad \forall x \geqslant \mathbf{A} \qquad \|f\|_{\infty} - 2\varepsilon \leqslant \mathbf{F}(x)^{1/x} \leqslant \|f\|_{\infty}$$

Ainsi

$$F(x)^{1/x} \xrightarrow[x \to +\infty]{} ||f||_{\infty}$$

Exercice 5 (***)

Soit $P \in \mathbb{C}[X]$ non constant. On suppose que P n'admet pas de racine. On pose

$$\forall (r,t) \in \mathbb{R}_+ \times \mathbb{R} \qquad \psi_r(t) = \exp\left(\int_0^t \frac{P'(re^{is})}{P(re^{is})} i re^{is} ds\right)$$

et

$$\forall r \geqslant 0$$
 $F(r) = \frac{1}{2\pi} \int_0^{2\pi} \frac{P'(re^{is})}{P(re^{is})} re^{is} ds$

- 1. Soit $r \ge 0$. Justifier que ψ_r est bien définie, dérivable et déterminer $\psi'_r(t)$ pour t réel.
- 2. Soit $r \ge 0$. Déterminer une expression simple de $\psi_r(t)$ pour t réel et en déduire que la fonction F est à valeurs dans \mathbb{Z} .
- 3. Justifier que F est continue sur $[0; +\infty[$ puis déterminer $\lim_{r\to +\infty} F(r)$.
- 4. Conclure en établissant le théorème de d'Alembert-Gauss.

Corrigé: 1. Comme P n'admet pas de racine, l'intégrande de ψ_r est bien définie, continue comme quotient de fonctions continues dont le dénominateur ne s'annule pas. D'après le théorème fondamental de l'analyse, la fonction ψ_r est donc bien définie, dérivable avec

$$\forall t \in \mathbb{R}$$
 $\psi'_r(t) = \frac{P'(re^{it})}{P(re^{it})} i re^{it} \psi_r(t)$

2. Soit $r \ge 0$. On observe

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[P(re^{it}) \right] = i r e^{it} P'(re^{it})$$

Ainsi, la fonction $t \mapsto P(re^{it})$ est solution de l'équation différentielle

$$x' - \frac{P'(re^{it})}{P(re^{it})}ire^{it}x = 0$$

On en déduit $\psi_r \in \text{Vect} (t \mapsto P(re^{it}))$. Il en résulte en particulier que ψ_r est périodique d'où $\psi_r(2\pi) = \psi_r(0) = 1$. Ainsi, on a

$$\forall r \geqslant 0 \qquad \exp\left(2\mathrm{i}\pi F(r)\right) = 1$$

On conclut

La fonction F est à valeurs dans \mathbb{Z} .

3. On pose

$$\forall (r,s) \in [0; +\infty[\times[0; 2\pi]] \qquad f(r,s) = \frac{P'(re^{is})}{P(re^{is})} re^{is}$$

Vérifions les hypothèses du théorème de continuité sous l'intégrale.

- Pour $r \geq 0$, on a $f(r, \cdot) \in \mathscr{C}_{pm}([0; 2\pi], \mathbb{R})$.
- Pour $s \in [0; 2\pi]$, on a $f(\cdot, s) \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$.
- Domination : Soit $a \ge 0$. L'ensemble $[0; a] \times [0; 2\pi]$ est compact comme produit de compacts et la fonction continue $(r, s) \mapsto f(r, s)$ y atteint ses bornes ce qui fournit une domination. Ainsi, la fonction F est continue sur [0; a] pour tout $a \ge 0$ et par conséquent

$$\boxed{F \in \mathscr{C}^0([\,0\,;+\infty\,[\,,\mathbb{R})\,]}$$

Notons $P = \sum_{k=0}^{n} a_k X^k$ avec n entier non nul et $a_n \neq 0$. Pour $r \geqslant 0$ et s réel, on trouve

$$P(re^{is}) = a_n r^n e^{ins} + o(r^n)$$
 et $re^{is}P'(re^{is}) = na_n r^n e^{ins} + o(r^n)$

d'où

$$\forall s \in \mathbb{R} \qquad \frac{P'(re^{is})}{P(re^{is})} re^{is} \xrightarrow[r \to +\infty]{} n$$

Montrons une domination en vue d'utiliser le théorème de convergence dominée. On pose

$$\forall (r,s) \in [0; +\infty[\times[0; 2\pi]] \qquad \Delta(r,s) = |f(r,s) - n|$$

Soit $(r,s) \in [0;+\infty[\times[0;2\pi]]$. Par inégalité triangulaire, on trouve

$$\Delta(r,s) = \frac{\left| \sum_{k=0}^{n-1} a_k (k-n) r^k e^{iks} \right|}{\left| \sum_{k=0}^{n} a_k r^k e^{iks} \right|} \leqslant \frac{\sum_{k=0}^{n-1} |a_k| (n-k) r^k}{\left| \sum_{k=0}^{n} a_k r^k e^{iks} \right|}$$

On remarque

$$\left| \sum_{k=0}^{n-1} a_k r^k e^{iks} \right| \leqslant \sum_{k=0}^{n-1} |a_k| r^k \underset{r \to +\infty}{=} o(r^n)$$

Soit $\varepsilon \in]0;1[$. On dispose d'un seuil $R \ge 0$, indépendant de s puisque le membre de droite dans l'inégalité ne dépend plus que de r, tel que

$$\forall r \geqslant \mathbf{R}$$

$$\left| \sum_{k=0}^{n-1} a_k r^k e^{iks} \right| \leqslant \varepsilon |a_n| r^n$$

Ainsi

$$|a_n r^n| - \left| \sum_{k=0}^{n-1} a_k r^k e^{iks} \right| \geqslant |a_n| r^n (1-\varepsilon)$$

Et par inégalité triangulaire

$$\left| \sum_{k=0}^{n} a_k r^k e^{iks} \right| = \left| a_n r^n + \sum_{k=0}^{n-1} a_k r^k e^{iks} \right| \geqslant \left| |a_n r^n| - \left| \sum_{k=0}^{n-1} a_k r^k e^{iks} \right| \right| \geqslant |a_n| r^n (1 - \varepsilon)$$

Il vient

$$\Delta(r,s) \leqslant \frac{\sum\limits_{k=0}^{n-1} |a_k| (n-k) r^k}{|a_n| r^n (1-\varepsilon)} \xrightarrow[r \to +\infty]{} 0$$

Ainsi, on dispose d'un seuil $R' \ge R$, indépendant de s puisque le membre de droite dans l'inégalité ne dépend plus que de r, tel que

$$\forall r \geqslant \mathbf{R}' \qquad \Delta(r,s) \leqslant 1$$

Toujours par inégalité triangulaire, on obtient

$$\forall (r,s) \in [R'; +\infty[\times[0;2\pi]] \qquad |f(r,s)| \leqslant \Delta(r,s) + n \leqslant n + 1$$

Et par convergence dominée

$$F(r) \xrightarrow[r \to +\infty]{} \frac{1}{2\pi} \int_0^{2\pi} n \, ds = n$$

4. On a établi précédemment que la fonction F est constante d'où F(r) = n pour tout $r \ge 0$. Or, on a clairement F(0) = 0 ce qui est contradictoire puisque $n \ge 1$. L'hypothèse faite sur P est donc fausse et on conclut avec le théorème de d'Alembert-Gauss

Tout polynôme non constant de $\mathbb{C}[X]$ admet une racine.