Feuille d'exercices n°03

Exercice 1 (***)

Soit $f \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$ et a réel. On suppose que $\int_0^{+\infty} f(t) e^{-at} dt$ convergente. Montrer que pour tout $x \geqslant a$, l'intégrale $\int_0^{+\infty} f(t) e^{-xt} dt$ converge.

Indications: Poser F: $y \mapsto \int_0^y f(t) e^{-at} dt$ puis considérer $\int_0^{+\infty} F(t) e^{-\delta t} dt$ avec $\delta = x - a > 0$.

Exercice 2 (****)

Soit $f \in \mathcal{C}^0([0; +\infty[, \mathbb{R})])$ intégrable.

- 1. On suppose f uniformément continue. Montrer $f(x) \xrightarrow[x \to +\infty]{} 0$.
- 2. On suppose désormais f de classe \mathscr{C}^1 et $x \mapsto \int_x^{x+1} f'(t)^2 dt$ bornée. Montrer $f(x) \xrightarrow[x \to +\infty]{} 0$.

Indications: 1. Pour $x \ge 0$, majorer |f(x)| en intégrant f sur un intervalle suffisamment petit. 2. Pour $y \ge x$, écrire f(y) - f(x) comme une intégrale puis utiliser l'inégalité de Cauchy-Schwarz et ensuite la relation de Chasles.

Exercice 3 (***)

On note

$$I = \int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt \quad \text{et} \quad J = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) dt$$

- 1. Justifier la convergence de I et J et établir l'égalité I = J.
- 2. En déduire la valeur de I et J.

Indications: 1. Établir que $\ln(\sin(t)) = o\left(\frac{1}{\sqrt{t}}\right)$ puis utiliser le changement de variables $t = \frac{\pi}{2} - u$.

2. Calculer I + J puis utiliser des transformations trigonométriques.

Exercice 4 (***)

On pose $\forall x > 0 \qquad \mathrm{F}(x) = \int_x^{+\infty} \frac{1 + \sin(t^2)}{t^2} \, \mathrm{d}t \quad \mathrm{et} \quad \mathrm{G}(x) = \int_x^{+\infty} \frac{\mathrm{d}t}{t^2}$

- 1. Justifier que F et G sont bien définies.
- 2. Montrer $F(x) \underset{x \to +\infty}{\sim} G(x)$. Les intégrandes sont-ils également équivalents en $+\infty$?

Indications: 2. Procéder par intégration par parties pour F(x).

Exercice 5 (****)

Soit $f \in \mathscr{C}^0(\mathbb{R}_+, \mathbb{R})$ telle que f^2 intégrable sur \mathbb{R}_+ . On pose $g(x) = \frac{1}{x} \int_0^x f(t) dt$ pour x > 0.

- 1. Montrer que g se prolonge par continuité en 0.
- 2. Montrer que g^2 est intégrable sur \mathbb{R}_+ et que

$$\int_0^{+\infty} g^2(t) \, \mathrm{d}t \leqslant 4 \int_0^{+\infty} f^2(t) \, \mathrm{d}t$$

Indications : 1. Notant $F(x) = \int_0^x f(t) dt$ pour $x \ge 0$, reconnaître un taux d'accroissement.

2. En intégrant par partie, déterminer une primitive de g^2 en fonction de F. En déduire que pour $a \ge 0$, on a $\int_0^a g^2(x) dx \le 2 \int_0^a g(x) f(x) dx$ puis exploiter l'inégalité de Cauchy-Schwarz.

Exercice 6 (***)

On pose

$$\forall n \in \mathbb{N}$$
 $I_n = \int_0^{\pi} \frac{\sin\left((n + \frac{1}{2})t\right)}{\sin\left(\frac{t}{2}\right)} dt, \quad J_n = \int_0^{(n + \frac{1}{2})\pi} \frac{\sin(t)}{t} dt$

- 1. Montrer la convergence de $\int_0^{+\infty} \frac{\sin(t)}{t} dt$
- 2. Justifier que I_n et J_n sont bien définies pour tout n entier.
- 3. Pour n entier, calculer $I_{n+1} I_n$ puis en déduire la valeur de I_n pour tout n entier.
- 4. Soit $f \in \mathcal{C}^1([0;\pi],\mathbb{R})$. Montrer que

$$\lim_{n \to +\infty} \int_0^{\pi} f(t) \sin\left(\left(n + \frac{1}{2}\right)t\right) dt = 0$$

- 5. On pose $f(t) = \frac{1}{\sin(\frac{t}{2})} \frac{2}{t}$ pour $t \in]0; \pi]$ et f(0) = 0. Montrer que $f \in \mathscr{C}^1([0; \pi], \mathbb{R})$.
- 6. En déduire la valeur de $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Indications : 1. Utiliser le théorème d'intégration par parties en considérant une primitive de $t \mapsto \sin t$ qui s'annule en 0.

- 2. Utiliser l'équivalent usuel $\sin(u) \underset{u\to 0}{\sim} u$.
- 3. Pour $(p,q) \in \mathbb{R}^2$, déterminer une expression de $\sin(p) \sin(q)$ sous forme de produit.
- 4. Intégrer par parties.
- 5. Appliquer le théorème de limite de la dérivée.

Exercice 7 (***)

Soit $f \in \mathscr{C}^1([\,0\,; +\infty\,[\,,\,]\,0\,; +\infty\,[)$ telle que

$$\frac{f'(x)}{f(x)} \xrightarrow[x \to +\infty]{} a \quad \text{avec} \quad a < 0$$

2

Montrer que f et f' sont intégrables sur $[0; +\infty[$.

Indications : Intégrer une relation de comparaison.