Feuille d'exercices n°27

Dans ce qui suit, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Exercice 1 (***)

On note $\ell^2(\mathbb{N}, \mathbb{K})$ l'ensemble des suites $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$ de carré sommable, *i.e* telles que $\sum |u_n|^2$ converge. Montrer que $\ell^2(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -ev normé par

$$||u||_2 = \sqrt{\sum_{n=0}^{+\infty} |u_n|^2}$$

Indications: Établir

$$\forall (a,b) \in \mathbb{R}^2 \qquad (a+b)^2 \leqslant 2(a^2+b^2)$$

pour montrer que $\ell^2(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -ev. Pour l'inégalité triangulaire, se ramener à une configuration dans $\mathbb{K}^{\mathbb{N}+1}$ avec \mathbb{N} entier muni de la norme deux en posant pour $(u, v) \in \ell^2(\mathbb{N}, \mathbb{K})^2$, les suites $u^{\mathbb{N}} = (u_n \delta_{n \leq \mathbb{N}})_n$ et $v^{\mathbb{N}} = (v_n \delta_{n \leq \mathbb{N}})_n$.

Exercice 2 (***)

Soit E = $\{f \in \mathscr{C}^2([0;1],\mathbb{R}) \mid f(0) = f'(0) = 0\}$ muni de

$$\forall f \in E$$
 $N_1(f) = ||f||_{\infty} + ||f'||_{\infty} + ||f''||_{\infty}$ et $N_2(f) = ||f'' + 2f' + f||_{\infty}$

Justifier que N_1 et N_2 sont des normes puis les comparer.

Indications: Pour étudier la finesse de N_2 par rapport à N_1 , pour $f \in E$, poser h = f' + f et g = h' + h et procéder par variation de la constante pour trouver une expression de f fonction de f et une expression de f fonction de f conclure avec diverses inégalités triangulaires.

Exercice 3 (***)

Soient a, b, c et d des réels avec a < b et c < d. On pose

$$\forall \mathbf{P} \in \mathbb{R}[\mathbf{X}] \qquad \mathbf{N}_1(\mathbf{P}) = \sup_{t \in [\,a\,;b\,]} |\mathbf{P}(t)| \quad \text{et} \quad \mathbf{N}_2(\mathbf{P}) = \sup_{t \in [\,c\,;d\,]} |\mathbf{P}(t)|$$

Comparer les normes N_1 et N_2 .

Indications: Supposer b > d puis considérer $P_n = (X - m)^n$ avec $m = \min(a, c)$. Adapter cette idée pour le cas où a < c. Conclure en généralisant pour tous les autres cas.

Exercice 4 (**)

Soit E un K-ev normé et F un sev de E. Montrer

$$\forall (\lambda, x) \in \mathbb{K} \times E \qquad d(\lambda x, F) = |\lambda| d(x, F)$$

Indications: Pour $\lambda \in \mathbb{K}^*$ et $(x,y) \in E \times F$, observer

$$\|\lambda x - y\| = |\lambda| \, \|x - y/\lambda\| \geqslant |\lambda| \, \inf_{z \in \mathcal{F}} \, \|x - z\|$$

Conclure en suivant une démarche analogue à celle vue pour l'homogénéité de $\|\cdot\|_{\infty}$ sur \mathbb{K}^n .

Exercice 5 (****)

Soit $E = \mathcal{M}_n(\mathbb{C})$ et $A \in E$ avec $Sp(A) \subset D(0,1)$. Étudier la convergence de la suite $(A^p)_p$.

Indications: Choisir $\mathscr{B}=(\varepsilon_1,\ldots,\varepsilon_n)$ une base de trigonalisation de u canoniquement associé à A puis considérer $\mathscr{B}_k=(\varepsilon_1,\varepsilon_2/k,\ldots,\varepsilon_n/k^{n-1})$ avec k entier non nul à choisir pour que les termes au dessus de la diagonale de $\max_{\mathscr{B}_k} u$ soient, en valeur absolue, inférieurs à $\frac{\varepsilon}{n}$ avec $\varepsilon>0$. Notant $P=\max_{\mathscr{B}_k} \mathscr{B}_k$, considérer ensuite une norme sur A définie par

$$||A|| = N(P^{-1}AP)$$
 avec $N(M) = \sup_{||X||_{\infty}=1} ||MX||_{\infty}$

Montrer que ce choix de norme garantit l'inégalité dite de norme d'algèbre $\|MN\| \leq \|M\| \|N\|$ pour $(M, N) \in \mathcal{M}_n(\mathbb{C})^2$.

Exercice 6 (****)

Soit $E = \mathscr{C}^0([0;1],\mathbb{R})$ et $g \in E$. Pour $f \in E$, on pose

$$\mathrm{N}(f) = \sup_{x \in [\,0\,;1\,]} |f(x)g(x)|$$

- 1. Déterminer une condition nécessaire et suffisante sur q pour que N soit une norme.
- 2. Si pour tout $x \in [0;1]$, $g(x) \neq 0$, montrer que N et $\|\cdot\|_{\infty}$ sont équivalentes.
- 3. Démontrer la réciproque de la question précédente.

Indications: 1. Supposer qu'il existe $]\alpha;\beta[\subset g^{-1}(\{0\})]$ et obtenir une contradiction. Puis considérer l'hypothèse contraire.

3. Si $g(x_0) = 0$ avec $x_0 \in [0;1]$, il existe $\eta_n > 0$ tel que $g(x) \leqslant \frac{1}{n}$ pour pour $|x - x_0| \leqslant \eta_n$. Construire alors $f_n \in E$ telle que $||f_n||_{\infty} = 1$ et $N(f_n) \leqslant \frac{1}{n}$.