Feuille d'exercices n°32

Exercice 1 (***)

Soit $f: \mathbb{R} \to \mathbb{R}$ et $\Gamma_f = \{(x, f(x)), x \in \mathbb{R}\}$ son graphe.

- 1. Montrer que si f est continue, alors Γ_f est fermé.
- 2. Montrer que si f est bornée et Γ_f fermé, alors f est continue.
- 3. Le résultat précédent a-t-il lieu sans l'hypothèse f bornée?

Exercice 2 (***)

Soit $f:]0;1] \to \mathbb{R}$ uniformément continue. Montrer que f admet un prolongement par continuité en 0.

Exercice 3 (***)

Soit $(u_n)_n$ suite réelle bornée telle que $u_n + \frac{1}{2}u_{n+1} = a_n$ avec $a_n \xrightarrow[n \to \infty]{} a$. Montrer que $(u_n)_n$ converge et déterminer sa limite.

Exercice 4 (***)

Soit E un K-evn et F un sev de dimension finie de E. Montrer

$$\forall x \in E \quad \exists y \in F \quad | \quad d(x, F) = ||x - y||$$

Exercice 5 (***)

Soit E un evn, X une partie compacte non vide de E et $f: X \to X$ telle que

$$\forall (x, y) \in X^2 \text{ avec } x \neq y \quad ||f(x) - f(y)|| < ||x - y||$$

- 1. Montrer que f admet un unique point fixe α (considérer $\inf_{x \in X} ||x f(x)||$).
- 2. Soit $(u_n)_n$ définie par $u_0 \in X$ et $u_{n+1} = f(u_n)$. Montrer que $(u_n)_n$ converge vers α .

Exercice 6 (***)

Soit E un \mathbb{K} -evn, K un compact convexe non vide et $f: \mathbb{K} \to \mathbb{K}$ une application 1-lipschitzienne. Montrer que f admet un point fixe.

Exercice 7 (***)

Soit $f \in \mathscr{C}(\mathbb{R}, \mathbb{R})$. Montrer qu'il y a équivalence entre

- 1. L'image réciproque par f de tout compact de \mathbb{R} est un compact de \mathbb{R} .
- 2. $\lim_{x \to +\infty} |f(x)| = \lim_{x \to -\infty} |f(x)| = +\infty$

Exercice 8 (***)

- 1. Soit $z \in \mathbb{U}$. Montrer que 1 est valeur d'adhérence de la suite $(z^n)_n$.
- 2. Soit $(z_1, \ldots, z_p) \in \mathbb{U}^p$. Montrer que p est valeur d'adhérence de la suite $\left(\sum_{k=1}^p z_k^n\right)_n$.

Exercice 9 (***)

Soit E un K-ev normé de dimension finie et U un ouvert de E. Montrer que U peut s'écrire comme une union croissante de compacts.

Exercice 10 (***)

Montrer que $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs.

Exercice 11 (***)

Soit E un K-evn de dimension finie et $f \in \mathscr{C}(E, \mathbb{R})$ telle que $f(x) \xrightarrow{\|x\| \to +\infty} +\infty$. Montrer que f admet un minimum global.

Exercice 12 (***)

Soit E un K-evn, K un compact convexe non vide et $u \in \mathcal{L}_c(E)$ tel que $u(K) \subset K$. On note C = (id - u)(K) puis on pose

$$\forall n \in \mathbb{N}^*$$
 $u_n = \frac{1}{n} \sum_{k=0}^{n-1} u^k$ et $x_n = (\mathrm{id} - u) \circ u_n(a)$ avec $a \in K$

- 1. Montrer que C est un compact.
- 2. Montrer que $(x_n)_n \in \mathbb{C}^{\mathbb{N}}$ puis $x_n \xrightarrow[n \to \infty]{} 0$.
- 3. En déduire que u admet un point fixe dans K.

Exercice 13 (***)

Soit E un K-evn.

1. Soit $(x_n)_n$ suite à valeurs dans E pour laquelle il existe $\varepsilon > 0$ tel que

$$\forall (n,p) \in \mathbb{N}^2 \qquad n \neq p \implies \|x_n - x_p\| \geqslant \varepsilon$$

Montrer que $(x_n)_n$ n'admet aucune sous-suite convergente.

2. Soit K un compact de E. Montrer que pour tout $\varepsilon > 0$, il existe un entier p non nul et x_1, \ldots, x_p dans E tels que

$$K \subset \bigcup_{i=1}^p B(x_i, \varepsilon)$$

Exercice 14 (****)

Soit E un \mathbb{K} -evn. Montrer que si la sphère unité S(0,1) est compacte, alors E est de dimension finie.

2