Feuille d'exercices n°34

Exercice 1 (*)

En considérant la dérivée n-ième de l'application polynomiale $x \mapsto x^{2n}$, déterminer $\sum_{k=0}^{n} {n \choose k}^2$.

Exercice 2 (*)

Déterminer

$$\lim_{n \to +\infty} \int_{n}^{n+1} \sin\left(\frac{1}{t}\right) \, \mathrm{d}t$$

Exercice 3 (*)

Soit E un K-evn de dimension finie. Trouver toutes les applications $f: \mathbb{R} \to \mathcal{E}$ vérifiant

$$\forall (x,y) \in \mathbb{R}^2$$
 $||f(x) - f(y)|| \leqslant k |x - y|^{\alpha}$

avec k > 0 et $\alpha > 1$.

Exercice 4 (*)

Soit $E = \mathcal{M}_n(\mathbb{K})$ et $A \in E$ diagonalisable. On définit le rayon spectral de A noté $\rho(A)$ par

$$\rho(\mathbf{A}) = \max_{\lambda \in \operatorname{Sp}(\mathbf{A})} |\lambda|$$

Déterminer une condition nécessaire et suffisante sur $\rho(A)$ pour avoir $\sum A^k$ convergente.

Exercice 5 (**)

Soit $f \in \mathscr{C}^1(\left[\,0\,;1\,\right],\mathbb{R})$ vérifiant f(0)=0 et f(1)=1. Montrer

$$\forall n \ge 1 \quad \exists 0 < x_1 < \ldots < x_n < 1 \mid \sum_{i=1}^n f'(x_i) = n$$

Exercice 6 (**)

Soit $E = \mathcal{M}_n(\mathbb{C})$. On définit le rayon spectral d'une matrice noté ρ par

$$\forall A \in E$$
 $\rho(A) = \max_{\lambda \in Sp(A)} |\lambda|$

Soit $A \in E$. Montrer que pour toute norme d'opérateur sur E, on a

$$\forall p \in \mathbb{N}^* \qquad \rho(A) \leqslant ||A^p||_{\text{op}}^{1/p}$$

Exercice 7 (**)

On se place dans \mathbb{R}^2 muni de la norme euclidienne. Soit $f: t \mapsto (x(t), y(t)) \in \mathscr{C}^1(I, \mathbb{R}^2)$ avec ||f(t)|| = 1 pour tout $t \in I$ et $g: t \mapsto (-y(t), x(t))$. Montrer qu'il existe $\gamma \in \mathscr{C}^0(I, \mathbb{R})$ tel que

$$f' = \gamma g$$
 et $g' = -\gamma f$

Exercice 8 (**)

Soit E un K-evn de dimension finie, $f:\mathbb{R}\to \mathcal{E}$ dérivable en zéro et vérifiant

$$\forall x \in \mathbb{R}$$
 $f(2x) = 2f(x)$

Montrer que f est linéaire.

Exercice 9 (**)

1. Soit n entier non nul. Montrer que

$$\forall p \in [0; n-1]$$
 $\sum_{k=0}^{n} {n \choose k} (-1)^k k^p = 0$ et $\sum_{k=0}^{n} {n \choose k} (-1)^k k^n = (-1)^n n!$

Indication : on pourra considérer $\varphi(x) = (1 - e^x)^n$ pour x réel.

2. Soit $f \in \mathscr{C}^n(\mathbb{R}, E)$ avec E un \mathbb{K} -ev de dimension finie. Calculer $\lim_{h \to 0} \frac{1}{h^n} \sum_{k=0}^n \binom{n}{k} (-1)^k f(hk)$.

Exercice 10 (**)

Soit $X \in \mathscr{C}([0;1], \mathscr{M}_{n,1}(\mathbb{R}))$. Montrer

$$\|\int_0^1 \mathbf{X}(t)\mathbf{X}(t)^\top dt\|_2 \leqslant \operatorname{Tr}\left(\int_0^1 \mathbf{X}(t)\mathbf{X}(t)^\top dt\right)$$

Exercice 11 (**)

Déterminer des majorations pour les expressions suivantes :

2.
$$\left|\cos x - 1 + \frac{x^2}{2}\right|$$

1.
$$\left| \sin x - x + \frac{x^3}{6} \right|$$
 2. $\left| \cos x - 1 + \frac{x^2}{2} \right|$ 3. $\left| \ln(1+x) - x + \frac{x^2}{2} \right|$ pour x réel pour $x \geqslant 0$

Exercice 12 (**)

Calculer

$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\sin t}{t^{2}} dt \quad \text{et} \quad \lim_{x \to 0^{+}} \int_{x}^{2x} \frac{\sin t}{t^{2}} dt$$

2