Séance 2 -
$$MP+ - 22/11/24$$

Exercice 1 (Décomposition de Dunford ****)

Soit E un \mathbb{K} -ev de dimension finie et $u \in \mathcal{L}(E)$ trigonalisable. Montrer qu'il existe un unique couple $(d, n) \in \mathcal{L}(E)^2$ tel que u = d + n avec $d \circ n = n \circ d$ et d diagonalisable, n nilpotent. Établir également que d et u sont dans $\mathbb{K}[u]$.

Exercice 2 (Suites récurrentes linéaires ***)

Soit $E = \mathbb{K}^{\mathbb{N}}$ et $(u_n)_n$ suite récurrente linéaire d'ordre p (entier non nul) vérifiant

$$\forall n \in \mathbb{N} \qquad u_{n+p} = a_{p-1}u_{n+p-1} + \ldots + a_0u_n$$

avec a_0, \ldots, a_{p-1} des scalaires et $a_0 \neq 0$. On note $P = X^p - \sum_{k=0}^{p-1} a_k X^k$ et on suppose P scindé dans

 $\mathbb{K}[X]$ de la forme $P = \prod_{i=1}^{r} (X - \lambda_i)^{m_i}$ avec les λ_i deux à deux distincts et les m_i des entiers non nuls. On note $\sigma : E \to E$, $(u_n)_n \mapsto (u_{n+1})_n$ et $\Delta = \sigma - \mathrm{id}$.

- 1. Justifier que $\sigma \in \mathcal{L}(E)$ puis interpréter S_H à l'aide de $P(\sigma)$.
- 2. Soit $\lambda \in \mathbb{K}^*$ et m entier non nul. On note $e_{\lambda} = (\lambda^n)_n$ et pour $u \in \mathcal{E}$, on note $u = e_{\lambda}y$ avec $y \in \mathcal{E}$. Enfin, pour k entier, on pose $r_k = (n^k)_n$ et $\mathcal{F}_k = \mathrm{Vect}(r_0, \dots, r_k)$.
 - (a) Justifier que y est bien définie puis établir

$$u \in \operatorname{Ker} (\sigma - \lambda \operatorname{id})^m \iff y \in \operatorname{Ker} \Delta^m$$

(b) Établir

$$F_{m-1} \subset \operatorname{Ker} \Delta^m$$

- (c) Conclure que l'inclusion précédente est une égalité.
- 3. En déduire que $(n \mapsto n^j \lambda_i^n, i \in [1; r], j \in [0; m_i 1])$ est une base de S_H .

Exercice 3 (Trigonalisation simultanée ***)

Soient A, B deux matrices de $\mathcal{M}_n(\mathbb{C})$ qui commutent. Montrer que A et B sont simultanément trigonalisables, c'est-à-dire qu'il existe $P \in GL_n(\mathbb{C})$ telle que $P^{-1}AP$ et $P^{-1}BP$ sont triangulaires supérieures.

Exercice 4 (****)

Soit $E = \mathcal{M}_n(\mathbb{K})$, $(A, B) \in E^2$ et on pose $\Phi(M) = AM + MB$ pour tout $M \in E$. Justifier que $\Phi \in \mathcal{L}(E)$ puis montrer que les matrice A et B sont trigonalisables si et seulement si l'endomorphisme Φ l'est.

Exercice 5 (****)

Soit E un K-ev de dimension finie égale à n entier non nul et $u \in \mathcal{L}(E)$. Pour $x \in E$, on pose

$$E_x = \text{Vect } (u^k(x), k \in \mathbb{N}) \quad \text{et} \quad I_x = \{P \in \mathbb{K}[X] \mid P(u)(x) = 0_E\}$$

L'endomorphisme u est dit cyclique s'il existe $x \in E$ tel que $E_x = E$. On définit le commutant de u noté $\mathscr{C}(u)$ par

$$\mathscr{C}(u) = \{ v \in \mathscr{L}(\mathbf{E}) \mid u \circ v = v \circ u \}$$

- 1. Soit $x \in E$. Justifier qu'il existe un polynôme unitaire $\pi_{u,x} \in \mathbb{K}[X]$ tel que $I_x = \pi_{u,x}\mathbb{K}[X]$ et vérifiant $\pi_{u,x}|\pi_u$.
- 2. (a) On suppose $\pi_u = \mathbf{P}^{\alpha}$ avec $\mathbf{P} \in \mathbb{K}[\mathbf{X}]$ irréductible et α entier non nul. Établir qu'il existe $x \in \mathbf{E}$ tel que $\pi_{u,x} = \pi$.
 - (b) Généraliser le résultat précédent avec π_u quelconque. On pourra considérer sa décomposition en facteurs irréductibles dans $\mathbb{K}[X]$.
- 3. En déduire

$$u \text{ cyclique} \iff \pi_u = \chi_u$$

- 4. On suppose u trigonalisable.
 - (a) Établir

$$\dim \mathscr{C}(u) \geqslant n$$

(b) En déduire

$$\pi_u = \chi_u \iff \mathbb{K}[u] = \mathscr{C}(u)$$

Exercice 6 (****)

Soit $A \in \mathcal{M}_n(\mathbb{C})$ et S(A) la classe de similitude de A, *i.e.*

$$S(A) = \{M \in \mathcal{M}_n(\mathbb{C}) \mid M \text{ semblable à } A\}$$

- 1. Montrer que si A est inversible, alors $\overline{S(A)} \subset GL_n(\mathbb{C})$.
- 2. Montrer

A diagonalisable \iff S(A) fermée

Exercice 7 (***)

Soit E un \mathbb{K} -evn. Déterminer la nature topologique de

$$\Lambda = \{(x_1, \dots, x_n) \in \mathcal{E}^n \mid (x_1, \dots, x_n) \text{ libre } \}$$

Exercice 8 (****)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$, continue surjective. Montrer que pour tout a réel, l'ensemble $f^{-1}(\{a\})$ n'est pas compact.

Indications

Exercice 1 (Décomposition de Dunford ****)

Indications : Pour l'existence d'un tel couple, utiliser un théorème de réduction du cours. Notant $\pi_u = \prod_{\lambda \in \operatorname{Sp}(u)} (X - \lambda)^{\alpha_{\lambda}}$, poser $F_{\lambda} = \operatorname{Ker}(u - \lambda \operatorname{id})^{\alpha_{\lambda}}$ pour $\lambda \in \operatorname{Sp}(u)$ et $(p_{\lambda})_{\lambda}$ la famille de

projecteurs associés à la somme directe $\bigoplus_{\lambda \in \operatorname{Sp}(u)} F_{\lambda}$. Montrer que $p_{\lambda} \in \mathbb{K}[u]$ pour $\lambda \in \operatorname{Sp}(u)$ puis

conclure que d et n sont dans $\mathbb{K}[u]$. Pour l'unicité, considérer (d', n') un autre couple solution et justifier que d et d' commutent puis conclure.

Exercice 2 (Suites récurrentes linéaires ***)

Indications: 2.(a) Justifier que y peut s'exprimer à partir de u puis déterminer $(\sigma - \lambda \operatorname{id})^k(u)$ en fonction de y pour k entier.

- 2.(b) Pour k entier, observer $\Delta(F_k) \subset F_{k-1}$ puis généraliser pour $\Delta^{\ell}(F_k)$ par récurrence.
- 2.(c) Montrer que $\Phi : \text{Ker } \Delta^m \to \mathbb{K}^m, (u_n)_n \mapsto (u_0, \dots, u_{m-1})$ est un isomorphisme.
- 3. Utiliser le lemme des noyaux puis faire la synthèse des résultats intermédiaires.

Exercice 3 (Trigonalisation simultanée ***)

Indications : Montrer que A et B possèdent un vecteur propre commun puis procéder par récurrence.

Exercice 4 (****)

Indications: Considérer f(M) = AM et g(M) = MB pour $M \in E$. Observer que f et g commutent puis déterminer P(f)(M) et g(f)(M) pour $M \in E$ et $P \in \mathbb{K}[X]$. En déduire que f et g sont simultanément trigonalisables (voir exercice de trigonalisation simultanée). Établir l'inclusion $\operatorname{Sp}_{\mathbb{C}}(A) + \operatorname{Sp}_{\mathbb{C}}(B) \subset \operatorname{Sp}_{\mathbb{C}}(\Phi)$ en considérant $M = XY^{\top}$ avec X et Y des colonnes bien choisies dans $\mathscr{M}_{n,1}(\mathbb{C})$ puis pour $\alpha \in \mathbb{C}$ et $M \in E$ avec $M \neq 0$, observer

$$\Phi(M) = \alpha M \iff AM = MC$$

avec C à préciser. En déduire $\operatorname{Sp}_{\mathbb{C}}(A) \cap \operatorname{Sp}_{\mathbb{C}}(C) \neq \emptyset$ et préciser $\operatorname{Sp}_{\mathbb{C}}(\Phi)$. Enfin, considérer Φ comme endomorphisme de $\mathcal{M}_n(\mathbb{C})$ puis comme endomorphisme de E et conclure que les $\lambda_i + \mu_j$ sont dans \mathbb{K} avec λ_i , μ_j valeurs propres respectives de A et B puis enfin que les λ_i et μ_j sont dans \mathbb{K} .

Exercice 5 (****)

Indications: 1. Observer que pour $x \in E$, le couple $(I_x, +)$ est un idéal de l'anneau $(\mathbb{K}[X], +, \times)$. 2.(a) Considérer $x \in E$ tel que $P^{\alpha-1}(u)(x) \neq 0_E$.

2.(b) Appliquer le résultat de la question 2.(a) à chaque u_i induit par u sur $E_i = \text{Ker P}_i^{\alpha_i}(u)$ où $\prod_{i=1}^r P_i^{\alpha_i}$ désigne la décomposition de π_u en facteurs irréductibles. En déduire la construction d'un vecteur $x \in E$ adapté pour avoir $\pi_{u,x} = \pi_u$.

3. Pour $x \in E$, établir dim $E_x = \deg \pi_{u,x}$.

4.(a) Pour $T \in \mathcal{M}_n(\mathbb{K})$ triangulaire supérieure, considérer le système TM-MT=0 et compter le nombre d'équations et d'inconnues. On pourra détailler les équations concernant les coefficients diagonaux du système.

Exercice 6 (****)

Indications: 1. Utiliser le déterminant.

2. Montrer que deux matrices semblables ont même polynôme minimal. Si A est diagonalisable, considérer $(B_k)_k \in S(A)^{\mathbb{N}}$ avec $B_k \xrightarrow[k \to \infty]{} B$ puis déterminer $\pi_A(B)$. Comparer χ_A et χ_B et conclure. Si S(A) est fermée, considérer $u \in \mathscr{L}(\mathbb{C}^n)$ canoniquement associé à A puis $\mathscr{B} = (\varepsilon_1, \ldots, \varepsilon_n)$ une base de trigonalisation de u et ensuite $\mathscr{B}_k = (\varepsilon_1, \varepsilon_2/k, \ldots, \varepsilon_n/k^{n-1})$ avec k entier non nul.

Exercice 7 (***)

Indications: Considérer une suite $(x^{(k)})_k$ à valeurs dans $E \setminus \Lambda$ convergente de limite $x \in E$, un n-uplet $\lambda^{(k)} = (\lambda_1^{(k)}, \dots, \lambda_n^{(k)}) \in \mathbb{K}^n \setminus \{0\}$ tel que $\sum_{i=1}^n \lambda_i^{(k)} x_i^{(k)} = 0$ puis $\alpha^{(k)} = \frac{\lambda^{(k)}}{\|\lambda^{(k)}\|}$. A l'aide de cette suite $(\alpha^{(k)})_k$, établir que $x \in E \setminus \Lambda$.

Exercice 8 (****)

Indications: Par l'absurde, supposer qu'il existe a réel tel que $f^{-1}(\{a\})$ est compact puis considérer $B_R = B_f(0, R)$ qui contient $f^{-1}(\{a\})$ et étudier la connexité par arcs de $C_R = \mathbb{R}^2 \setminus B_R$. Considérer enfin des réels c et d dans $\mathbb{R} \setminus f(B_R)$ tels que c < a < d et aboutir à une contradiction.