Feuille d'exercices n°50

Exercice 1 (**)

- 1. Déterminer le rayon de convergence de $\sum_{n\geqslant 1} \ln(n)x^n$.
- 2. Montrer que la suite $\left(\ln(n) \sum_{k=1}^n \frac{1}{k}\right)_{n\geqslant 1}$ est bornée.
- 3. En déduire un équivalent de $\sum_{n=1}^{+\infty} \ln(n) x^n$ pour $x \to 1^-$.

Exercice 2 (**)

Montrer les égalités :

1.
$$\int_0^{+\infty} \ln(\operatorname{th}(t)) dt = -\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$$

3.
$$\int_0^1 \ln(t) \ln(1-t) dt = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)^2}$$

2.
$$\int_0^1 \frac{\operatorname{Arctan}(t)}{t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$$

4.
$$\int_0^1 \frac{\mathrm{d}t}{t^t} = \sum_{n=1}^{+\infty} \frac{1}{n^n}$$

Exercice 3 (**)

Soit $(a_n)_n$ suite non nulle T-périodique avec T entier non nul.

- 1. Déterminer le rayon de convergence de la série entière $\sum a_n x^n$.
- 2. Déterminer sa somme S sur l'intervalle ouvert de convergence.

Exercice 4 (***)

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Déterminer les rayons de convergence des séries entières :

$$1. \sum a_n^2 z^n$$

$$2. \sum \frac{a_n}{n!} z^n$$

3.
$$\sum \frac{n! \, a_n}{n^n} z^n$$

Exercice 5 (***)

Déterminer le rayon puis un équivalent en 1 de la somme de la série entière $\sum x^{n^2}$.

Exercice 6 (***)

Soit
$$z \in \mathbb{C}$$
. Montrer

$$\left(1+\frac{z}{n}\right)^n \xrightarrow[n\to\infty]{} \mathrm{e}^z$$

1

Exercice 7 (***)

- 1. Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0. On suppose que $\sum a_n R^n$ converge. À l'aide d'une transformation d'Abel, montrer que la série $\sum a_n x^n$ converge uniformément sur [0; R].
- 2. Soient $\sum a_n$, $\sum b_n$ deux séries réelles ou complexes convergentes de produit de Cauchy $\sum c_n$. Montrer que si la série $\sum c_n$ converge, alors on a la relation

$$\left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right) = \sum_{n=0}^{+\infty} c_n$$

Exercice 8 (****)

Soit $(a_n)_n \in \mathbb{C}^{\mathbb{N}}$ une suite sommable. Pour $z \in \mathbb{C}$, on pose $g(z) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} z^n$.

- 1. Montre que la fonction g est définie et continue sur \mathbb{C} .
- 2. Établir l'égalité $\int_0^{+\infty} \mathrm{e}^{-t} g(t) \, \mathrm{d}t = \sum_{n=0}^{+\infty} a_n$
- 3. Désormais, on suppose seulement que la série $\sum a_n$ converge. Montrer que les résultats précédents demeurent. On pourra poser

$$A_{-1} = 0$$
 $\forall n \in \mathbb{N}$ $A_n = \sum_{k=0}^n a_k$ $\forall z \in \mathbb{C}$ $F(z) = \sum_{n=0}^{+\infty} A_{n-1} \frac{z^n}{n!}$

Exercice 9 (****)

Soit $\alpha > 0$.

- 1. Déterminer le rayon de convergence de $\sum n^{\alpha}x^{n}$. On note S sa somme.
- 2. Établir

$$\forall x \in \left] 0; 1 \right[\frac{x}{\left| \ln(x) \right|^{\alpha+1}} \Gamma(\alpha+1) \leqslant S(x) \leqslant \frac{1}{x \left| \ln(x) \right|^{\alpha+1}} \Gamma(\alpha+1)$$

3. En déduire un équivalent simple de S(x) lorsque $x \to 1^-$.