Préparation à l'interrogation n°13

1 Croissances comparées

Soient α , $\beta > 0$. On a

$$\frac{\mathrm{e}^{\,\alpha x}}{x^{\beta}} \xrightarrow[x \to +\infty]{} + \infty \qquad x^{\beta} \mathrm{e}^{\,-\alpha x} \xrightarrow[x \to +\infty]{} 0 \qquad x^{\alpha} \ln(x)^{\beta} \xrightarrow[x \to 0]{} 0 \qquad \frac{\ln(x)^{\beta}}{x^{\alpha}} \xrightarrow[x \to +\infty]{} 0$$

2 Trigonométrie

1.
$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$
 2. $\sin(t)^2 = \frac{1-\cos(2t)}{2}$

3 Calcul intégral

1.
$$\int_{-\infty}^{\infty} \frac{dt}{\sqrt{1-t^2}}$$
 2. $\int_{-\infty}^{\infty} (1-t)^n dt$ 3. $\int_{-\infty}^{\infty} \frac{dt}{1-t^2}$

4 Réduction

Soit $u \in \mathcal{L}(E)$ avec E un K-ev de dimension finie.

1. On a

$$\begin{array}{l} u \ \mathrm{diagonalisable} \ \Longleftrightarrow \mathbf{E} = \bigoplus_{\lambda \in \mathrm{Sp}\,(u)} \mathbf{E}_{\lambda}(u) \\ \\ \Longleftrightarrow \dim \mathbf{E} = \sum_{\lambda \in \mathrm{Sp}\,(u)} \dim \mathbf{E}_{\lambda}(u) \\ \\ \Longleftrightarrow \chi_u \ \mathrm{scind\acute{e}} \ \mathrm{et} \ \forall \lambda \in \mathrm{Sp}\,(u) \qquad \dim \mathbf{E}_{\lambda}(u) = m_{\lambda}(u) \end{array}$$

2. On a

u diagonalisable $\iff \pi_u$ scindé à racines simples $\iff \exists P \in \mathbb{K}[X]$ scindé à racines simples et annulateur de u

5 Calcul matriciel

Soient
$$A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K}), X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ et } Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \text{ dans } \mathcal{M}_{n,1}(\mathbb{K}), \text{ on a}$$

$$X^\top A Y = \sum_{1 \le i,j \le n} x_i y_j a_{i,j}$$

6 Exercices types

- 1. Fonction Γ ;
- 2. Intégrales de Bertrand;
- 3. Intégrales de Wallis (voir Aide au test 03);
- 4. $GL_n(\mathbb{K})$ ouvert dense de $\mathscr{M}_n(\mathbb{K})$.

7 Exercice type - Constante γ d'Euler

$$\forall n \in \mathbb{N}^*$$
 $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$

Montrer que la suite $(u_n)_{n\geqslant 1}$ converge.

Corrigé : On pose $v_n = u_n - u_{n-1}$ pour $n \ge 2$. On a

$$v_n = \frac{1}{n} - \ln(n) + \ln(n-1) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{n} + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right)$$

On en déduit la convergence de la série $\sum_{n\geqslant 2}v_n$ d'après le critère de Riemann et comme c'est une série téléscopique, sa convergence équivaut à celle de la suite $(u_n)_{n\geqslant 1}$ d'où

$$\exists \gamma \in \mathbb{R} \mid \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \xrightarrow[n \to \infty]{} \gamma$$

8 Exercice type

Soit $E = \mathbb{R}^n$ avec n entier non nul et $a \in E$ normé. Déterminer $\operatorname{mat}_{\mathscr{C}} p_{\operatorname{Vect}(a)}$.

Corrigé : Soit $x \in E$. Notons $M = \max_{\mathscr{C}} p_{\text{Vect}(a)}$, $A = \max_{\mathscr{C}} a$ et $X = \max_{\mathscr{C}} x$. On a

$$p_{\text{Vect }(a)}(x) = \langle x, a \rangle a$$

Matriciellement

$$\forall X \in \mathscr{M}_{n,1}(\mathbb{R})$$

$$MX = \langle X, A \rangle A = A(A^{T}X) = (AA^{T})X$$

On trouve

$$\boxed{\mathbf{M} = \mathbf{A}\mathbf{A}^{\top}}$$

9 Exercice type

Soit E préhilbertien réel et (x, y, z) une famille libre de vecteurs de E. On note F = Vect(y, z). Caractériser $p_F(x)$ en exhibant un système linéaire.

Corrigé : On a $p_F(x) \in F$ d'où $p_F(x) = ay + bz$ avec a, b réels et $x - p_F(x) \in F^{\perp}$ d'où

$$\begin{cases} \langle x - p_{\rm F}(x), y \rangle = 0 \\ \langle x - p_{\rm F}(x), z \rangle = 0 \end{cases}$$

Ainsi

$$p_{F}(x) = ay + bz \quad \text{avec} \quad \begin{cases} \langle y, y \rangle \, a + \langle y, z \rangle \, b = \langle x, y \rangle \\ \langle y, z \rangle \, a + \langle z, z \rangle \, b = \langle x, z \rangle \end{cases}$$

10 Questions de cours

Espaces préhilbertiens, développements en série entière usuels, graphes usuels.