Feuille d'exercices n°60

Exercice 1 (***)

Pour $A \in \mathscr{S}_n^+(\mathbb{R})$, on note $B = \sqrt{A}$ l'unique matrice $B \in \mathscr{S}_n^+(\mathbb{R})$ solution de $B^2 = A$. Montrer la continuité de cette application $\sqrt{\cdot}$.

Corrigé: On munit $E = \mathscr{M}_n(\mathbb{R})$ de son produit scalaire canonique. Soit $(A_k)_k \in \mathscr{S}_n^+(\mathbb{R})^{\mathbb{N}}$ telle que $A_k \xrightarrow[k \to +\infty]{} A$. Pour tout k entier, il existe une unique matrice $B_k \in \mathscr{S}_n^+(\mathbb{R})$ telle que $B_k^2 = A_k$. Il vient

$$\forall k \in \mathbb{N}$$
 $\|\mathbf{B}_k\|^2 = \operatorname{Tr}(\mathbf{B}_k^\top \mathbf{B}_k) = \operatorname{Tr}(\mathbf{B}_k^2) = \operatorname{Tr}(\mathbf{A}_k)$

Or, l'application Tr est linéaire donc continue sur l'espace E de dimension finie. Par conséquent, on a $\operatorname{Tr}(A_k) \xrightarrow[k \to +\infty]{} \operatorname{Tr}(A)$ et cette suite est donc bornée. Il en résulte que la suite $(B_k)_k$ est bornée. Soit φ une extractrice telle que $B_{\varphi(k)} \xrightarrow[k \to +\infty]{} B$. La matrice B est dans $\mathscr{S}_n^+(\mathbb{R})$ par fermeture de cet ensemble (voir décomposition de Cartan). Par continuité du produit matriciel, on a

$$A_{\varphi(k)} = B_{\varphi(k)}^2 \xrightarrow[k \to +\infty]{} B^2 = A$$

Ainsi, la suite $(B_k)_k$ est bornée et admet $B=\sqrt{A}$ pour unique valeur d'adhérence dans E espace de dimension finie. Il en résulte que $B_k \xrightarrow[k \to +\infty]{} B$ et on conclut

L'application
$$\sqrt{\cdot}$$
 est continue sur $\mathscr{S}_n^+(\mathbb{R})$.

Exercice 2 (***)

Soit E euclidien.

- 1. Soit $u \in \mathcal{S}(\mathbf{E})$. Établir $\max \operatorname{Sp}(u) = \sup_{\|x\|=1} \langle u(x), x \rangle$
- 2. Soient u, v dans $\mathscr{S}(E)$. On pose

$$\forall t \in \mathbb{R}$$
 $f(t) = \max \operatorname{Sp}(u + tv)$

Montrer que la fonction f est convexe.

Corrigé: 1. D'après le théorème spectral, on dispose de $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormée de vecteurs propres de u associés aux valeurs propres $\lambda_1 \leqslant \ldots \leqslant \lambda_n$. Pour x vecteur normé de E, on note $x = \sum_{i=1}^n x_i e_i$ avec les x_i coordonnées de x dans \mathscr{B} . On a

$$\langle u(x), x \rangle = \left\langle \sum_{i=1}^{n} \lambda_i e_i x_i, \sum_{j=1}^{n} x_j e_j \right\rangle = \sum_{1 \leqslant i, j \leqslant n} \lambda_i x_i x_j \underbrace{\langle e_i, e_j \rangle}_{=\delta_{i,j}} = \sum_{i=1}^{n} \lambda_i x_i^2 \leqslant \lambda_n \sum_{i=1}^{n} x_i^2 = \lambda_n$$

et l'inégalité est une égalité pour $x=e_n.$ On conclut

$$\max \operatorname{Sp}(u) = \sup_{\|x\|=1} \langle u(x), x \rangle$$

2. D'après ce qui précède, on a pour t réel

$$f(t) = \sup_{\|x\|=1} \langle (u+tv)(x), x \rangle = \sup_{\|x\|=1} (\langle u(x), x \rangle + t \langle v(x), x \rangle)$$

On pose

$$\forall (x,t) \in E \times \mathbb{R}$$
 $h(x,t) = \langle u(x), x \rangle + t \langle v(x), x \rangle$

Soient a, b réels et $\lambda \in [0;1]$. Il vient pour $x \in S(0,1)$

$$h(x, \lambda a + (1 - \lambda)b) = \lambda h(x, a) + (1 - \lambda)h(x, b) \leqslant \lambda f(a) + (1 - \lambda)f(b)$$

Passant à la borne supérieure pour $x \in S(0,1)$, on conclut

La fonction
$$f$$
 est convexe.

Exercice 3 (***)

Soit $A \in \mathscr{S}_n^{++}(\mathbb{R})$ et $B \in \mathscr{S}_n(\mathbb{R})$.

1. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telle que

$$A = P^{T}P$$
 et $B = P^{T}DP$

- 2. Établir $\forall (A, B) \in \mathscr{S}_n^{++}(\mathbb{R}) \times \mathscr{S}_n^{+}(\mathbb{R}) \quad \det(A + B) \geqslant \det A + \det B$
- 3. Le résultat précédent a-t-il lieu si on suppose seulement $A \in \mathscr{S}_n^+(\mathbb{R})$?

Corrigé : 1. Il existe $S \in \mathscr{S}_n^+(\mathbb{R})$ telle que $A = S^2$ et $\det A = (\det S)^2$ d'où $S \in GL_n(\mathbb{R})$. On peut donc écrire B = SCS avec $C = S^{-1}BS^{-1}$ qui est symétrique. Par suite, avec le théorème spectral, il existe $Q \in \mathcal{O}_n(\mathbb{R})$ et D diagonale réelle telle que $C = Q^TDQ$. Posant P = QS, on a

$$P^{\mathsf{T}}P = SQ^{\mathsf{T}}QS = S^2 = A$$
 et $P^{\mathsf{T}}DP = SQ^{\mathsf{T}}DQS = SCS = B$

et la matrice P est inversible comme produit de matrices inversibles. Ainsi

Il existe
$$P \in GL_n(\mathbb{R})$$
 et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telles que $A = P^TP$ et $B = P^TDP$.

2. On applique le résultat précédent. On a

$$\det(\mathbf{A} + \mathbf{B}) = \det(\mathbf{P}^{\mathsf{T}} \mathbf{P} + \mathbf{P}^{\mathsf{T}} \mathbf{D} \mathbf{P}) = \det(\mathbf{P}^{\mathsf{T}}) \det(\mathbf{I}_n + \mathbf{D}) \det \mathbf{P}$$

avec $D = P^{-1} BP^{-1} = diag(\lambda_1, \dots, \lambda_n)$. Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$, notant $Y = P^{-1}X$, on a

$$\langle \mathbf{X}, \mathbf{D} \mathbf{X} \rangle = \mathbf{Y}^{\top} \mathbf{P}^{\top} \mathbf{D} \mathbf{P} \mathbf{Y} = \langle \mathbf{Y}, \mathbf{B} \mathbf{Y} \rangle \geqslant 0$$

d'où Sp (D) $\subset \mathbb{R}_+$, autrement dit les $\lambda_i \geqslant 0$. On a

$$\det(I_n + D) = \prod_{i=1}^{n} (1 + \lambda_i) \ge 1 + \prod_{i=1}^{n} \lambda_i = 1 + \det D$$

Ainsi

$$\det(A+B) \geqslant \det(P^\top)(1+\det D) \det P = \det(P^\top P) + \det(P^\top D P)$$

On conclut

$$\forall (A, B) \in \mathscr{S}_{n}^{++}(\mathbb{R}) \times \mathscr{S}_{n}^{+}(\mathbb{R}) \qquad \det(A + B) \geqslant \det A + \det B$$

3. Si A ou B est dans $\mathscr{S}_n^{++}(\mathbb{R})$, il s'agit du résultat précédemment établi (par symétrie des rôles). Supposons A et B dans $\mathscr{S}_n^+(\mathbb{R}) \setminus \mathscr{S}_n^{++}(\mathbb{R})$. On a $A+B \in \mathscr{S}_n^+(\mathbb{R})$ d'où $\det(A+B) \geqslant 0$ et $\det A = \det B = 0$ et par conséquent

$$\forall (A, B) \in \mathscr{S}_n^+(\mathbb{R}) \times \mathscr{S}_n^+(\mathbb{R}) \qquad \det(A + B) \geqslant \det A + \det B$$

Exercice 4 (***)

Soit E euclidien et (u_1, \ldots, u_n) une base de E. On pose

$$\forall x \in E$$
 $f(x) = \sum_{i=1}^{n} \langle x, u_i \rangle u_i$

- 1. Montrer que $f \in \mathscr{S}^{++}(E)$.
- 2. Justifier l'existence de $g \in \mathcal{S}(\mathbf{E})$ tel que $g^2 = f^{-1}$.
- 3. Montrer que $(g(u_1), \ldots, g(u_n))$ est une base orthonormée de E.

Corrigé: 1. On a clairement $f \in \mathcal{L}(E)$ puis pour $(x,y) \in E^2$

$$\langle f(x), y \rangle = \sum_{i=1}^{n} \langle x, u_i \rangle \langle y, u_i \rangle$$

expression symétrique en x et y et

$$\langle f(x), x \rangle = \sum_{i=1}^{n} \langle x, u_i \rangle^2 \geqslant 0$$

avec

$$\langle f(x), x \rangle = 0 \iff x \in \text{Vect}(u_1, \dots, u_n)^{\perp} = E^{\perp} \iff x = 0_E$$

Ainsi

$$f \in \mathscr{S}^{++}(\mathbf{E})$$

2. Soit \mathscr{B} une base orthonormée de vecteurs propres de f. On note $\mathrm{mat}_{\mathscr{B}}f=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. On a f inversible puisque $\mathrm{Sp}\,(f)\subset]\,0\,; +\infty\,[$ et $\mathrm{mat}_{\mathscr{B}}f^{-1}$ est diagonale avec des termes diagonaux $\frac{1}{\lambda_i}$ strictement positifs ce qui prouve $f^{-1}\in\mathscr{S}^{++}(\mathrm{E})$. On définit $g\in\mathscr{L}(\mathrm{E})$ avec $\mathrm{mat}_{\mathscr{B}}g=\mathrm{diag}(1/\sqrt{\lambda_1},\ldots,1/\sqrt{\lambda_n})$ diagonale donc symétrique dans une base orthonormée. On a $\mathrm{mat}_{\mathscr{B}}g^2=\mathrm{mat}_{\mathscr{B}}f^{-1}$ d'où

Il existe
$$g \in \mathcal{S}(\mathbf{E})$$
 tel que $g^2 = f$.

3. On note $v_j = f^{-1}(u_j)$ pour tout $j \in [1; n]$. Soit $(i, j) \in [1; n]^2$. On a

$$\langle g(u_i), g(u_j) \rangle = \langle u_i, g^2(u_j) \rangle = \langle u_i, f^{-1}(u_j) \rangle = \langle u_i, v_j \rangle$$

Or, on a

$$f(v_j) = \sum_{i=1}^n \langle v_j, u_i \rangle u_i = u_j$$

d'où $\langle v_j, u_i \rangle = \delta_{i,j}$ par liberté de (u_1, \dots, u_n) . Ainsi

La famille $(g(u_1), \ldots, g(u_n))$ est une base orthonormée de E.

Exercice 5 (****)

Soit E euclidien et (x_1, \ldots, x_n) une famille libre de vecteurs de E. Montrer qu'il existe (y_1, \ldots, y_n) famille de vecteurs normés de E vérifiant $||y_i - y_j|| = 1$ pour tout $i \neq j$ et

$$\forall k \in [1; n]$$
 $\operatorname{Vect}(x_1, \dots, x_k) = \operatorname{Vect}(y_1, \dots, y_k)$

Corrigé: Une famille de vecteurs de E normés et équidistants est dite régulière. Par orthonormalisation de Gram-Schmidt, il existe (u_1, \ldots, u_n) famille orthonormée de E qui vérifie le grossissement simultané

$$\forall k \in [1; n]$$
 $\operatorname{Vect}(x_1, \dots, x_k) = \operatorname{Vect}(u_1, \dots, u_k)$

On pose $G = \frac{1}{2}(J + I_n)$ avec $J \in \mathcal{M}_n(\mathbb{R})$ matrice constituée de 1. On montre que G est orthogonalement semblable à $\frac{1}{2}\operatorname{diag}(n+1,I_{n-1})$. Par conséquent, il existe $S \in \mathcal{S}_n^+(\mathbb{R})$ telle que $G = S^2 = S^T S$. On pose

$$\forall j \in [1; n]$$
 $v_j = \sum_{i=1}^n s_{i,j} u_i$

Ainsi

$$\forall (i,j) \in [1; n]^2$$
 $\langle v_i, v_j \rangle = \sum_{k=1}^n s_{i,k} s_{j,k} = (S^\top S)_{i,j}$

Par construction, la famille (v_1, \ldots, v_n) est régulière mais on n'a pas *a priori* le grossissement simultané. La matrice G est inversible et par propriété sur les matrices de Gram

$$\operatorname{rg}(v_1,\ldots,v_n)=\operatorname{rg} G=n$$

autrement dit, la famille (v_1, \ldots, v_n) est libre. Soit $(\varepsilon_1, \ldots, \varepsilon_n)$ obtenue par orthonormalisation de Gram-Schmidt de (v_1, \ldots, v_n) . On définit $f \in \mathcal{O}(E)$ par

$$\forall i \in [1; n] \qquad f(\varepsilon_i) = u_i$$

et on pose

$$\forall i \in [1; n] \qquad y_i = f(v_i)$$

L'application f étant une isométrie, on a

$$\forall i \in [1; n]$$
 $||y_i|| = ||f(v_i)|| = ||v_i|| = 1$

et

$$\forall (i,j) \in [1; n]^2$$
 $||y_i - y_j|| = ||f(v_i - v_j)|| = ||v_i - v_j|| = \delta_{i,j}$

Ainsi, la famille (y_1, \ldots, y_n) est régulière. Enfin, pour $k \in [1; n]$, sachant $\text{Vect}(v_1, \ldots, v_k) = \text{Vect}(\varepsilon_1, \ldots, \varepsilon_k)$, il vient

$$\operatorname{Vect}(y_1, \dots, y_k) = \operatorname{Vect}(f(v_1), \dots, f(v_k))$$
$$= \operatorname{Vect}(f(\varepsilon_1), \dots, f(\varepsilon_k)) = \operatorname{Vect}(u_1, \dots, u_k)$$

ce qui prouve le grossissement simultané. On conclut

Il existe une famille régulière qui vérifie le grossissement simultané avec (x_1, \ldots, x_n) .

Exercice 6 (****)

Soit $A \in \mathscr{S}_n^+(\mathbb{R})$ et $\alpha > 0$. On note

$$\mathcal{S}_{\alpha} = \{ M \in \mathscr{S}_{n}^{+}(\mathbb{R}) \mid \det M \geqslant \alpha \}$$

Établir

$$\inf_{\mathbf{M}\in\mathcal{S}_{\alpha}}\operatorname{Tr}\left(\mathbf{A}\mathbf{M}\right)=n\left(\alpha\det\mathbf{A}\right)^{\frac{1}{n}}$$

Corrigé : Soit $S \in \mathscr{S}_n^+(\mathbb{R})$ telle que $A = S^2$. Par propriété fondamentale de la trace, on a

$$\forall M \in \mathcal{S}_{\alpha}$$
 $\operatorname{Tr}(AM) = \operatorname{Tr}(S^{2}M) = \operatorname{Tr}(SMS)$

On a clairement SMS $\in \mathscr{S}_n(\mathbb{R})$ et

$$\forall X \in \mathscr{M}_{n,1}(\mathbb{R}) \qquad \langle X, SMSX \rangle = \langle SX, M(SX) \rangle \geqslant 0$$

d'où SMS $\in \mathscr{S}_n^+(\mathbb{R})$ et par suite $\operatorname{Tr}(\operatorname{SMS}) \geq 0$ puisque $\operatorname{Sp}(\operatorname{SMS}) \subset [0; +\infty[$. Supposons $0 \in \operatorname{Sp}(A)$. D'après le théorème spectral, il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que $P^\top AP = \operatorname{diag}(0, \lambda_2, \dots, \lambda_n)$. Soit $M = P \operatorname{diag}(\beta, \varepsilon I_{n-1}) P^\top$ avec $\varepsilon > 0$ et $\beta \geq \alpha \varepsilon^{1-n}$. Par construction, on a $M \in \mathcal{S}_{\alpha}$ et on

trouve $\operatorname{Tr}(AM) = \varepsilon \operatorname{Tr}(A)$. On peut donc rendre $\operatorname{Tr}(AM)$ arbitrairement arbitrairement petit d'où, pour $A \in \mathscr{S}_n^+(\mathbb{R}) \setminus \operatorname{GL}_n(\mathbb{R})$

$$\inf_{\mathbf{M} \in \mathcal{S}_{\alpha}} \operatorname{Tr}(\mathbf{A}\mathbf{M}) = 0 = n \left(\alpha \det \mathbf{A}\right)^{\frac{1}{n}}$$

Supposons désormais $A \in \mathscr{S}_n^{++}(\mathbb{R})$. La racine carrée S est également dans $\mathscr{S}_n^{++}(\mathbb{R})$. L'application $M \mapsto SMS$ réalise alors une bijection de \mathcal{S}_{α} dans $\mathcal{S}_{\alpha \det A}$ de réciproque $N \mapsto S^{-1}NS^{-1}$. Ainsi, on a

$$\inf_{M \in \mathcal{S}_{\alpha}} \operatorname{Tr} (AM) = \inf_{M \in \mathcal{S}_{\alpha}} \operatorname{Tr} (SMS) = \inf_{M \in \mathcal{S}_{\alpha \det A}} \operatorname{Tr} M$$

Pour $M \in \mathscr{S}_n^+(\mathbb{R})$, la matrice M est diagonalisable d'après le théorème spectral et par inégalité arithmético-géométrique, le spectre de M étant inclus dans $[0; +\infty[$, on trouve

$$(\det M)^{\frac{1}{n}} = \left(\prod_{i=1}^{n} \mu_i\right)^{\frac{1}{n}} \leqslant \frac{1}{n} \sum_{i=1}^{n} \mu_i = \frac{1}{n} \operatorname{Tr} M$$

avec les μ_i valeurs propres de M et par suite

$$\inf_{\mathbf{M} \in \mathcal{S}_{\alpha \det \mathbf{A}}} \operatorname{Tr} \, \mathbf{M} \geqslant n \left(\alpha \det \mathbf{A}\right)^{\frac{1}{n}}$$

Cette inégalité est une égalité pour $M = (\alpha \det A)^{\frac{1}{n}} I_n$ qui est bien dans $\mathcal{S}_{\alpha \det A}$. On conclut

$$\underbrace{\inf_{\mathbf{M}\in\mathcal{S}_{\alpha}}\operatorname{Tr}(\mathbf{A}\mathbf{M})=n\left(\alpha\det\mathbf{A}\right)^{\frac{1}{n}}}$$

Exercice 7 (****)

Soit $E = \mathcal{M}_n(\mathbb{R})$ muni de son produit scalaire canonique. Montrer

$$\mathcal{O}_n(\mathbb{R}) = S(0, \sqrt{n}) \cap \det^{-1} (\{-1, 1\})$$

Corrigé : On a clairement

$$\mathcal{O}_n(\mathbb{R}) \subset \mathrm{S}(0,\sqrt{n}) \cap \det^{-1}(\{-1,1\})$$

Soit $M \in S(0, \sqrt{n}) \cap \det^{-1}(\{-1, 1\})$. D'après le théorème spectral, on dispose de $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ telles que $M^{\top}M = PDP^{\top}$. On observe

$$1 = (\det \mathbf{M})^2 = \det(\mathbf{M}^{\top}\mathbf{M}) = \det \mathbf{D} = \prod_{i=1}^{n} \lambda_i \quad \text{et} \quad \frac{1}{n} \sum_{i=1}^{n} \lambda_i = \frac{1}{n} \operatorname{Tr} \left(\mathbf{M}^{\top}\mathbf{M} \right) = \frac{1}{n} \|\mathbf{M}\|^2 = 1$$

On a clairement $M^{\top}M \in \mathscr{S}_{n}^{+}(\mathbb{R})$ d'où $\lambda_{i} \geq 0$ pour tout $i \in [1; n]$. Ainsi, d'après l'inégalité arithmético-géométrique, on obtient

$$1 = \prod_{i=1}^{n} \lambda_i \leqslant \left(\frac{1}{n} \sum_{i=1}^{n} \lambda_i\right)^n = 1$$

ce qui prouve qu'il s'agit du cas d'égalité dans cette inégalité d'où l'égalité des λ_i entre eux. Il en résulte $\lambda_i = 1$ pour tout $i \in [1; n]$ ce qui prouve que $\mathbf{M}^{\top}\mathbf{M}$ est semblable à \mathbf{I}_n donc égale à \mathbf{I}_n . On conclut

$$\mathcal{O}_n(\mathbb{R}) = \mathrm{S}(0, \sqrt{n}) \cap \det^{-1}(\{-1, 1\})$$

Lemme 1. Soit x_1, \ldots, x_n des réels positifs. On a

$$\sqrt[n]{\prod_{i=1}^{n} x_i} \leqslant \frac{1}{n} \sum_{i=1}^{n} x_i$$

avec égalité si et seulement si $x_1 = \ldots = x_n$.

Preuve: Prouvons le cas d'égalité. Le cas d'égalité est trivial si l'un des x_i est nul. Supposons les $x_i > 0$. Le sens indirect est immédiat. Supposons les x_i non tous égaux, par exemple $x_1 \neq x_2$ sans perte de généralité. On pose $y_1 = y_2 = \frac{x_1 + x_2}{2}$ puis $y_i = x_i$ pour $i \in [3; n]$. On a

$$\prod_{i=1}^{n} x_i < \prod_{i=1}^{n} y_i \iff x_1 x_2 < \frac{(x_1 + x_2)^2}{4} \iff (x_1 - x_2)^2 > 0$$

ce qui est vrai. Supposons $\sqrt[n]{\prod_{i=1}^n x_i} = \frac{1}{n} \sum_{i=1}^n x_i$. En observant $\frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{n} \sum_{i=1}^n y_i$, il vient

$$\frac{1}{n} \sum_{i=1}^{n} x_i = \sqrt[n]{\prod_{i=1}^{n} x_i} < \sqrt[n]{\prod_{i=1}^{n} y_i} \leqslant \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} x_i$$

ce qui est absurde. Le résultat suit.