Feuille d'exercices n°60

Exercice 1 (***)

Pour $A \in \mathscr{S}_n^+(\mathbb{R})$, on note $B = \sqrt{A}$ l'unique matrice $B \in \mathscr{S}_n^+(\mathbb{R})$ solution de $B^2 = A$. Montrer la continuité de cette application $\sqrt{\cdot}$.

Indications: Considérer $E = \mathcal{M}_n(\mathbb{R})$ muni de son produit scalaire canonique puis, pour une suite $(A_k)_k$ à valeurs dans $\mathscr{S}_n^+(\mathbb{R})$ telle que $A_k \xrightarrow[k \to +\infty]{} A$, considérer la suite $(B_k)_k$ à valeurs dans $\mathscr{S}_n^+(\mathbb{R})$ telle que $B_k^2 = A_k$ pour tout k et justifier que cette suite est bornée. Vérifier enfin qu'elle admet une unique valeur d'adhérence.

Exercice 2 (***)

Soit E euclidien.

- 1. Soit $u \in \mathcal{S}(E)$. Établir $\max \operatorname{Sp}(u) = \sup_{\|x\|=1} \langle u(x), x \rangle$
- 2. Soient u, v dans $\mathscr{S}(E)$. On pose

$$\forall t \in \mathbb{R}$$
 $f(t) = \max \operatorname{Sp}(u + tv)$

Montrer que la fonction f est convexe.

Indications: 1. Décomposer $x \in S(0,1)$ dans une base orthonormée de E puis déterminer une expression de $\langle u(x), x \rangle$.

2. Introduire

$$\forall (x,t) \in E \times \mathbb{R}$$
 $h(x,t) = \langle u(x), x \rangle + t \langle v(x), x \rangle$

puis considérer une à x fixé dans S(0,1), la fonction $t\mapsto h(x,t)$ évaluée sur une combinaison linéaire de a et b réels.

Exercice 3 (***)

Soit $A \in \mathscr{S}_n^{++}(\mathbb{R})$ et $B \in \mathscr{S}_n(\mathbb{R})$.

1. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telle que

$$A = P^{\mathsf{T}}P$$
 et $B = P^{\mathsf{T}}DP$

- 2. Établir $\forall (A, B) \in \mathscr{S}_n^{++}(\mathbb{R}) \times \mathscr{S}_n^{+}(\mathbb{R}) \quad \det(A + B) \geqslant \det A + \det B$
- 3. Le résultat précédent a-t-il lieu si on suppose seulement $A \in \mathscr{S}_n^+(\mathbb{R})$?

Indications : 1. Justifier qu'il existe $S \in \mathscr{S}_n^{++}(\mathbb{R})$ telle que $A = S^2$ puis observer que la matrice $C = S^{-1}BS^{-1}$ est symétrique réelle.

- 2. Démontrer l'inégalité dans le cas $A = I_n$ et B diagonale puis généraliser avec le résultat précédent.
- 3. Observer qu'une matrice symétrique positive non définie est de déterminant nul.

Exercice 4 (***)

Soit E euclidien et (u_1, \ldots, u_n) une base de E. On pose

$$\forall x \in E$$
 $f(x) = \sum_{i=1}^{n} \langle x, u_i \rangle u_i$

- 1. Montrer que $f \in \mathscr{S}^{++}(E)$.
- 2. Justifier l'existence de $g \in \mathcal{S}(E)$ tel que $g^2 = f^{-1}$.
- 3. Montrer que $(g(u_1), \ldots, g(u_n))$ est une base orthonormée de E.

Indications : 2. Utiliser une base orthonormée de vecteurs propres de f et caractériser g sur cette base.

3. Poser $v_j = f^{-1}(u_j)$ pour $j \in [1; n]$ puis déterminer $\langle g(u_i), g(u_j) \rangle$ pour $(i, j) \in [1; n]^2$ en fonction de u_i et v_j . Conclure à l'aide de l'expression de $f(v_j)$.

Exercice 5 (****)

Soit E euclidien et (x_1, \ldots, x_n) une famille libre de vecteurs de E. Montrer qu'il existe (y_1, \ldots, y_n) famille de vecteurs normés de E vérifiant $||y_i - y_j|| = 1$ pour tout $i \neq j$ et

$$\forall k \in [1; n]$$
 $\text{Vect}(x_1, \dots, x_k) = \text{Vect}(y_1, \dots, y_k)$

Indications: Considérer (u_1, \ldots, u_n) obtenue par orthonormalisation de Gram-Schmidt de (x_1, \ldots, x_n) . Puis construire (v_1, \ldots, v_n) famille de vecteurs normés équidistants à l'aide d'une matrice de Gram en choisissant les cordonnées des v_j dans la base (u_1, \ldots, u_n) . Enfin, considérer l'isométrie f définie par $f(\varepsilon_i) = u_i$ pour $i \in [1; n]$ avec $(\varepsilon_1, \ldots, \varepsilon_n)$ obtenue par orthonormalisation de Gram-Schmidt de (v_1, \ldots, v_n) puis choisir les y_i .

Exercice 6 (****)

Soit $A \in \mathscr{S}_n^+(\mathbb{R})$ et $\alpha > 0$. On note

$$S_{\alpha} = \{ M \in \mathscr{S}_{n}^{+}(\mathbb{R}) \mid \det M \geqslant \alpha \}$$

Établir

$$\inf_{\mathbf{M} \in \mathcal{S}_{\alpha}} \operatorname{Tr}(\mathbf{A}\mathbf{M}) = n \left(\alpha \det \mathbf{A}\right)^{\frac{1}{n}}$$

Indications: Pour S racine carrée de A, relier $\operatorname{Tr}(AM)$ et $\operatorname{Tr}(SMS)$ pour $M \in \mathcal{S}_{\alpha}$. En déduire dans un premier temps $\operatorname{Tr}(AM) \geqslant 0$ puis traiter le cas où $0 \in \operatorname{Sp}(A)$. Pour $P \in \mathcal{O}_n(\mathbb{R})$ telle que $P^{\top}AP = \operatorname{diag}(0, \lambda_2, \dots, \lambda_n)$, choisir $M = P \operatorname{diag}(\beta, \varepsilon I_{n-1})P^{\top}$ avec $\varepsilon > 0$ et β à choisir puis conclure pour le cas A non inversible. Si $A \in \mathscr{S}_n^{++}(\mathbb{R})$, observer que $M \mapsto \operatorname{SMS}$ réalise une bijection de \mathcal{S}_{α} dans $\mathcal{S}_{\alpha \operatorname{det} A}$. Conclure en utilisant l'inégalité arithmético-géométrique avec le cas d'égalité.

Exercice 7 (****)

Soit $E = \mathcal{M}_n(\mathbb{R})$ muni de son produit scalaire canonique. Montrer

$$\mathcal{O}_n(\mathbb{R}) = \mathrm{S}(0, \sqrt{n}) \cap \det^{-1}(\{-1, 1\})$$

Indications: Pour $M \in S(0, \sqrt{n}) \cap \det^{-1}(\{-1, 1\})$, appliquer le théorème spectral à la matrice $M^{\top}M$ puis considérer son déterminant et sa trace et utiliser l'inégalité arithmético-géométrique avec son cas d'égalité.