Spé MP ISM Semaine 14

PROGRAMME DE COLLES DE PHYSIQUE-CHIMIE DU 20/01/25 AU 24/01/25

Cette semaine la colle comportera :

- Une question de cours d'oxydoréduction de Math Sup sans diagramme E-pH avec éventuellement une petite application.
- Un bel exercice de mécanique quantique

Physique: Mécanique quantique

Révisions de Math Sup (voir semaine 14)

CH MQ 1 : Les bases de la mécanique quantique ondulatoire Application à la particule libre

CH MQ 2 : Exemples de résolution de l'équation de Schrödinger

6.3. États stationnaires d'une particule dans des potentiels constants par morceaux	
États stationnaires d'une particule dans le cas d'une marche de potentiel.	Citer des exemples physiques illustrant cette problématique.
Cas E > V : probabilité de transmission et de réflexion. Cas E < V : évanescence.	Exploiter les conditions de continuité (admises) relatives à la fonction d'onde. Établir la solution dans le cas d'une particule incidente sur une marche de potentiel. Expliquer les différences de comportement par rapport à une particule classique Déterminer les coefficients de transmission et de réflexion en utilisant les courants de probabilités. Reconnaître l'existence d'une onde évanescente
Barrière de potentiel et effet tunnel.	et la caractériser. Décrire qualitativement l'influence de la hauteur ou de largeur de la barrière de potentiel sur le coefficient de transmission. Exploiter un coefficient de transmission fourni. Citer des applications.
États stationnaires d'une particule dans un puits de potentiel infini.	Établir les solutions et les niveaux d'énergie de la particule confinée. Identifier des analogies avec d'autres domaines de la physique.
Énergie de confinement.	Estimer l'énergie d'une particule confinée dans son état fondamental pour un puits non rectangulaire. Associer l'analyse à l'inégalité d'Heisenberg.

Chimie:

Chimie révisions de Math Sup: oxydo-réduction

Notions et contenus	Capacités exigibles
4.4.2. Réactions d'oxydo-réduction	
Oxydants et réducteurs, réactions d'oxydo-	
réduction	Relier la position d'un élément dans le tableau
Nombre d'oxydation.	périodique et le caractère oxydant ou réducteur du
Exemples d'oxydants et de réducteurs	corps simple correspondant.
minéraux usuels : nom, nature et formule des	Prévoir les nombres d'oxydation extrêmes d'un
ions thiosulfate, permanganate, hypochlorite,	élément à partir de sa position dans le tableau
du peroxyde d'hydrogène.	périodique.
	Identifier l'oxydant et le réducteur d'un couple.
Pile, tension à vide, potentiel d'électrode,	Décrire le fonctionnement d'une pile à partir d'une
formule de Nernst, électrodes de référence.	mesure de tension à vide ou à partir des potentiels
	d'électrode.
Diagrammes de prédominance ou d'existence.	Utiliser les diagrammes de prédominance ou
biagrammes de predominance od d'existence.	d'existence pour prévoir les espèces incompatibles
	ou la nature des espèces majoritaires.
	·
Aspect thermodynamique des réactions	Prévoir qualitativement ou quantitativement le
d'oxydo-réduction.	caractère thermodynamiquement favorisé ou
Dismutation et médiamutation.	défavorisé d'une réaction d'oxydo-réduction à partir
	des potentiels standard des couples.
	Mettre en œuvre une réaction d'oxydo-réduction
	pour réaliser une analyse quantitative en
	solution aqueuse.
	Réaliser une pile et étudier son fonctionnement.

Les diagrammes potentiel-pH ne sont pas encore au programme de colles.