Corrigé du devoir en temps libre n°14

Problème I

Supposons qu'il existe une solution x de (H) développable en série entière sur]-R;R[avec R > 0. Par dérivation de séries entières, il vient pour $t \in]-R;R[$

$$x(t) = \sum_{n=0}^{+\infty} a_n t^n$$
 $x'(t) = \sum_{n=1}^{+\infty} n a_n t^{n-1}$ $x''(t) = \sum_{n=2}^{+\infty} n(n-1) a_n t^{n-2}$

On injecte dans (H):

$$\forall t \in]-R; R[\qquad \sum_{n=2}^{+\infty} n(n-1)a_n t^{n-1} + 3\sum_{n=1}^{+\infty} na_n t^{n-1} + \sum_{n=0}^{+\infty} 4a_n t^{n+3} = 0$$

Avec un changement d'indice dans la dernière somme, il vient pour $t \in]-R;R[$

$$\sum_{n=2}^{+\infty} n(n-1)a_n t^{n-1} + 3\sum_{n=1}^{+\infty} na_n t^{n-1} + \sum_{n=4}^{+\infty} 4a_{n-4} t^{n-1} = 0$$

Puis on isole les premiers termes et on rassemble par linéarité

$$\forall t \in]-R; R[$$
 $3a_1 + 8a_2t + 15a_3t^2 + \sum_{n=4}^{+\infty} [n(n+2)a_n + 4a_{n-4}]t^{n-1} = 0$

Par unicité du développement en série entière sur]-R;R[, on trouve

$$a_1 = a_2 = a_3 = 0$$
 $\forall n \geqslant 4$ $n(n+2)a_n + 4a_{n-4} = 0$

Une récurrence immédiate donne

$$\forall n \in \mathbb{N}$$
 $a_{4n+1} = a_{4n+2} = a_{4n+3} = 0$ et $a_0 \neq 0 \Longrightarrow a_{4n} \neq 0$

Pour obtenir une expression simple de a_{4n} , on écrit un produit téléscopique

$$a_{4n} = a_0 \prod_{k=1}^n \left[\frac{a_{4k}}{a_{4(k-1)}} \right] = a_0 \prod_{k=1}^n \left[\frac{-1}{2k(2k+1)} \right] = a_0 \frac{(-1)^n}{(2n+1)!}$$

Pour r > 0, notant $u_n = \frac{r^{4n}}{(2n+1)!}$, il vient

$$\frac{u_{n+1}}{u_n} = \frac{r^4}{(2n+2)(2n+3)} \xrightarrow[n \to \infty]{} 0$$

D'après le critère de d'Alembert, on en déduit la convergence absolue de $\sum u_n$ pour tout r > 0 d'où $R = +\infty$. Pour t réel, on a

$$\sum_{n=0}^{+\infty} a_n t^n = \sum_{n=0}^{+\infty} a_{4n} t^{4n} = a_0 \sum_{n=0}^{+\infty} (-1)^n \frac{t^{4n}}{(2n+1)!}$$

On pose

$$\forall t \in \mathbb{R}$$
 $\varphi(t) = \sum_{n=0}^{+\infty} (-1)^n \frac{(t^2)^{2n}}{(2n+1)!}$

En multipliant par t^2 , on identifie

$$\forall t \in \mathbb{R}$$
 $t^2 \varphi(t) = \sum_{n=0}^{+\infty} (-1)^n \frac{(t^2)^{2n+1}}{(2n+1)!} = \sin(t^2)$

d'où

$$\forall t \in \mathbb{R} \qquad \varphi(t) = \begin{cases} \frac{\sin(t^2)}{t^2} & \text{si } t \neq 0\\ 1 & \text{sinon} \end{cases}$$

Par conséquent, on a établi

L'ensemble des solutions de (H) développables en série entière est $Vect(\varphi)$.

Sur $I =]0; \sqrt{\pi}[$, l'équation (H) est une équation différentielle linéaire homogène d'ordre deux résolue. L'ensemble S_H est donc un plan vectoriel. Si ψ est une solution de (H) sur I, considérant le wronskien W de (φ, ψ) , on a

$$\varphi \psi' - \varphi' \psi = W \tag{L}$$

On sait que le wronskien vérifie l'équation différentielle $\mathbf{W}' = -\frac{3}{t}\mathbf{W}$ d'où

$$\forall t \in I$$
 $W(t) = \frac{\beta}{t^3}$ avec $\beta \in \mathbb{R}$

On peut désormais considérer l'équation (L) comme une équation différentielle linéaire d'ordre un avec second membre. La droite vectorielle Vect (φ) est l'ensemble des solutions de l'équation homogène associée et par variation de la constante, avec λ dérivable sur I et $\psi = \lambda \varphi$, il vient pour tout $t \in I$

$$\varphi^2(t)\lambda'(t) = \frac{\beta}{t^3} \quad \text{avec} \quad \beta \in \mathbb{R}$$

d'où

$$\forall t \in I$$
 $\lambda(t) = \beta \int \frac{t}{\sin^2(t^2)} dt + \alpha = -\frac{\beta}{2} \cot \alpha(t^2) + \alpha$

avec α , β réels. Notant $a = \alpha$ et $b = -\beta/2$, on conclut

$$x \in \mathcal{S}_{\mathcal{H}} \iff \exists (a,b) \in \mathbb{R}^2 \mid \forall t \in \mathcal{I} \qquad x(t) = \lambda(t)\varphi(t) = a\frac{\sin(t^2)}{t^2} + b\frac{\cos(t^2)}{t^2}$$

Ainsi

$$S_{H} = \left\{ t \in I \mapsto a \frac{\sin(t^{2})}{t^{2}} + b \frac{\cos(t^{2})}{t^{2}}, (a, b) \in \mathbb{R}^{2} \right\}$$

Remarque : On peut aussi procéder avec la méthode de Lagrange ou même conjecturer la forme des solutions manquantes puis la vérifier.

Problème II

1. On se place dans \mathbb{C} . Il existe $P \in GL_n(\mathbb{C})$, $D = diag(\lambda_1, \ldots, \lambda_n)$ et T triangulaire supérieure stricte telles que $P^{-1}MP = D + T$. Il s'ensuit

$$P^{-1}e^{M}P = diag(e^{\lambda_1}, \dots, e^{\lambda_n}) + Q$$

avec Q triangulaire supérieure stricte. Par conséquent

$$\det(e^{M}) = \prod_{i=1}^{n} e^{\lambda_i} = \exp\left(\sum_{i=1}^{n} \lambda_i\right) = e^{\operatorname{Tr}(M)}$$

2. Soit
$$A \in \mathscr{A}_n(\mathbb{R})$$
. On a

$$(e^{A})^{T} = e^{A^{T}} = e^{-A} = (e^{A})^{-1}$$

d'où l'orthogonalité de e^A. Comme les termes diagonaux d'une matrice antisymétrique sont nuls

$$\det(e^{A}) = e^{Tr(A)} = e^{0} = 1$$

Par conséquent

$$\exp(\mathscr{A}_n(\mathbb{R})) \subset \mathcal{SO}_n(\mathbb{R})$$

3. Soit θ réel. On observe $A(\theta) = \theta R(\pi/2)$ puis

$$\forall k \in \mathbb{N}$$
 $A(\theta)^k = \theta^k R(k\pi/2)$

d'où
$$e^{A(\theta)} = \begin{pmatrix} c(\theta) & -s(\theta) \\ s(\theta) & c(\theta) \end{pmatrix}$$
 avec $c(\theta) = \sum_{k=0}^{+\infty} \frac{\theta^k}{k!} \cos\left(\frac{k\pi}{2}\right)$ $s(\theta) = \sum_{k=0}^{+\infty} \frac{\theta^k}{k!} \sin\left(\frac{k\pi}{2}\right)$

Avec des considérations trigonométriques, on remarque $c(\theta) = \cos(\theta)$, $s(\theta) = \sin(\theta)$ et on conclut

$$\forall \theta \in \mathbb{R} \qquad e^{A(\theta)} = R(\theta)$$

4. Soit $M \in \mathcal{SO}_n(\mathbb{R})$. On dispose de $P \in \mathcal{O}_n(\mathbb{R})$ telle que $P^TMP = \operatorname{diag}(I_p, -I_q, R(\theta_1), \dots, R(\theta_s))$ avec les θ_i réels. Comme det M = 1, il s'ensuit que q est pair et on peut donc écrire $-I_q = \operatorname{diag}(R(\pi), \dots, R(\pi))$. Ainsi, on obtient

$$P^{\top}MP = diag(I_p, R(\alpha_1), \dots, R(\alpha_r))$$

avec les α_i réels. Avec le résultat de la question précédente, il vient

$$M = P \exp \operatorname{diag}(0, \dots, 0, A(\alpha_1), \dots, A(\alpha_r)) P^{\top} = \exp \left(P \operatorname{diag}(0, \dots, 0, A(\alpha_1), \dots, A(\alpha_r)) P^{\top} \right)$$

On conclut

$$\mathcal{SO}_n(\mathbb{R}) \subset \exp(\mathscr{A}_n(\mathbb{R}))$$

Problème III

1. La famille (cos, sin) est clairement un système fondamental de solutions de l'équation homogène (H) associée à l'équation (L). On procède ensuite par variation des constantes. On cherche λ , μ dérivables de $[0; +\infty[$ dans \mathbb{R} , solutions pour tout $t \geq 0$ de

$$\begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} \lambda'(t) \\ \mu'(t) \end{pmatrix} = \begin{pmatrix} 0 \\ f(t) \end{pmatrix} \iff \begin{pmatrix} \lambda'(t) \\ \mu'(t) \end{pmatrix} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} 0 \\ f(t) \end{pmatrix}$$

d'où

$$\forall t \ge 0$$
 $\lambda(t) = \alpha - \int_0^t \sin(s)f(s) ds$ $\mu(t) = \beta + \int_0^t \cos(s)f(s) ds$

avec α , β réels. Les solutions de (L) sont décrites par

$$\forall t \geqslant 0 \qquad x(t) = \lambda(t)\cos(t) + \mu(t)\sin(t) = \alpha\cos(t) + \beta\sin(t) + \int_0^t \left[\sin(t)\cos(s) - \sin(s)\cos(t)\right] f(s) ds$$

Ainsi

$$S_{L} = \left\{ t \geqslant 0 \mapsto \alpha \cos(t) + \beta \sin(t) + \int_{0}^{t} \sin(t - s) f(s) \, ds, \ (\alpha, \beta) \in \mathbb{R}^{2} \right\}$$

2. Par monotonie de f, sa dérivée f' est de signe constant. Sans perte de généralité, on peut la supposer positive. On a

$$\int_0^t f'(s) \, \mathrm{d}s = f(t) - f(0) \xrightarrow[t \to +\infty]{} \ell - f(0)$$

ce qui prouve la convergence de $\int_0^{+\infty} f'(s) ds$. Avec les inégalité

$$\forall s \geqslant 0$$
 $0 \leqslant |\sin(s)f'(s)| \leqslant f'(s)$ et $0 \leqslant |\cos(s)f'(s)| \leqslant f'(s)$

on conclut par comparaison

Les intégrales
$$\int_0^{+\infty} \sin(s) f'(s) ds$$
 et $\int_0^{+\infty} \cos(s) f'(s) ds$ convergent absolument.

3. On a $f(t) = \ell + o(1) = O(1)$. Par intégration par partie, les fonctions sin et cos étant de classe \mathscr{C}^1 , on a pour $t \geqslant 0$

$$\int_{0}^{t} \cos(s) f(s) ds = \underbrace{[\sin(s) f(s)]_{0}^{t}}_{=O(1)} - \underbrace{\int_{0}^{t} \sin(s) f'(s) ds}_{=O(1)} = \underbrace{\int_{0}^{t} \sin(s) f'(s) ds}_{t \to +\infty} = O(1)$$

et de même

$$\int_0^t \sin(s) f(s) \, \mathrm{d}s \underset{t \to +\infty}{=} \mathrm{O}(1)$$

Pour x solution de (L), on dispose de α , β réels tels que

$$\forall t \geqslant 0 \qquad x(t) = \alpha \cos(t) + \beta \sin(t) + \sin(t) \int_0^t \cos(s) f(s) \, \mathrm{d}s - \cos(t) \int_0^t \sin(s) f(s) \, \mathrm{d}s$$

Toutes les quantités qui interviennent dans l'expression de x(t) pour $t \ge 0$ sont bornées. Par conséquent

4. Par intégration par parties, on a pour $t \ge 0$

$$\int_0^t \cos(s)f(s) ds = \sin(t)f(t) - \int_0^t \sin(s)f'(s) ds$$

et

$$\int_0^t \sin(s) f(s) \, ds = f(0) - \cos(t) f(t) + \int_0^t \cos(s) f'(s) \, ds$$

Soit x solution de (L). On dispose de α , β réels tels que pour $t \ge 0$

$$x(t) = \alpha \cos(t) + \beta \sin(t)$$

$$+\sin(t)\left[\sin(t)f(t) - \int_0^t \sin(s)f'(s) \, \mathrm{d}s\right] - \cos(t)\left[f(0) - \cos(t)f(t) + \int_0^t \cos(s)f'(s) \, \mathrm{d}s\right]$$
$$= f(t) + \cos(t)\left[\alpha - f(0) - \int_0^t \cos(s)f'(s) \, \mathrm{d}s\right] + \sin(t)\left[\beta - \int_0^t \sin(s)f'(s) \, \mathrm{d}s\right]$$

Comme les fonctions cos et sin n'admettent pas de limite en $+\infty$, si x admet une limite finie en $+\infty$, alors

$$\alpha = f(0) + \int_0^{+\infty} \cos(s) f'(s) \, ds \quad \text{et} \quad \beta = \int_0^{+\infty} \sin(s) f'(s) \, ds$$

La réciproque est vraie puisque

$$\cos(t) \left[\alpha - f(0) - \int_0^t \cos(s) f'(s) \, ds \right] \underset{t \to +\infty}{=} O(1) o(1) \xrightarrow[t \to +\infty]{} 0$$

et de même pour l'autre terme. Ainsi, il existe une unique fonction g solution de (L) ayant une limite finie en $+\infty$ caractérisée par le choix de α et β précédemment décrit. Par relation de Chasles, il vient pour $t\geqslant 0$

$$g(t) = f(t) + \cos(t) \int_{t}^{+\infty} \cos(s) f'(s) ds + \sin(t) \int_{t}^{+\infty} \sin(s) f'(s) ds$$
$$= f(t) + \int_{t}^{+\infty} \left[\cos(t) \cos(s) + \sin(t) \sin(s)\right] f'(s) ds$$

L'unique solution bornée de (L) est
$$g$$
 avec $\forall t \ge 0$ $g(t) = f(t) + \int_t^{+\infty} \cos(t-s) f'(s) \, ds$.

Problème IV

1. Soit $M \in \mathscr{S}_n(\mathbb{R})$. D'après le théorème spectral, on dispose de $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ telles que $M = PDP^{\top}$. Il s'ensuit

$$e^{M} = Pe^{D}P^{T} = P \operatorname{diag}(e^{\lambda_{1}}, \dots, e^{\lambda_{n}})P^{T}$$

ce qui prouve que la matrice e^{M} est symétrique réelle avec des valeurs propres dans $]0;+\infty[$.

$$\exp(\mathscr{S}_n(\mathbb{R})) \subset \mathscr{S}_n^{++}(\mathbb{R})$$

Remarque: D'autres approches sont possibles. Pour $M \in \mathscr{S}_n(\mathbb{R})$, on a $(e^M)^T = e^{M^T} = e^M$ puis, pour $X \in \mathscr{M}_{n,1}(\mathbb{R})$ avec $X \neq 0$, en utilisant la propriété fondamentale de l'exponentielle qui permet d'écrire $e^M = (e^{\frac{M}{2}})^2$, il vient

$$X^{\top} e^{M} X = \left(e^{\frac{M}{2}} X\right)^{\top} e^{\frac{M}{2}} X = \|e^{\frac{M}{2}} X\|^{2} > 0$$

le caractère strict résultant du fait que $e^{\frac{M}{2}} \in GL_n(\mathbb{R})$. On retrouve le résultat attendu.

2. Soit $B \in \mathscr{S}_n^{++}(\mathbb{R})$. D'après le théorème spectral, on dispose de $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ avec les $\lambda_i > 0$ telles que $B = PDP^{\top}$. On pose $\Delta = \operatorname{diag}(\ln(\lambda_1), \dots, \ln(\lambda_n))$ et $A = P\Delta P^{\top}$. Il vient

$$e^A = Pe^{\Delta}P^{\top} = P\operatorname{diag}(e^{\ln(\lambda_1)}, \dots, e^{\ln(\lambda_n)})P^{\top} = P\operatorname{diag}(\lambda_1, \dots, \lambda_n)P^{\top} = B$$

On conclut

L'application exp :
$$\mathscr{S}_n(\mathbb{R}) \to \mathscr{S}_n^{++}(\mathbb{R})$$
 est surjective.

3. Soit $A \in \mathscr{S}_n(\mathbb{R})$. D'après le théorème spectral, on dispose de $P \in \mathcal{O}_n(\mathbb{R})$ et $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ telles que $A = PDP^{\top}$. On note $\{\mu_1, \dots, \mu_p\} = \{e^{\lambda_i}, i \in [1; n]\}$ avec les μ_i deux à deux distincts et on pose $Q = \sum_{i=1}^p \ln(\mu_i) L_i$ avec $(L_i)_{1 \leq i \leq p}$ famille des polynômes interpolateurs de Lagrange associée à (μ_1, \dots, μ_p) . Pour $\lambda \in \operatorname{Sp}(A)$, on a $Q(e^{\lambda}) = \lambda$ d'où

$$Q(e^{A}) = Q\left(Pe^{D}P^{\top}\right) = PQ\left(\operatorname{diag}(e^{\lambda_{1}}, \dots, e^{\lambda_{n}})\right)P^{\top} = P\operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})P^{\top} = A$$

Ainsi

Pour
$$A \in \mathscr{S}_n(\mathbb{R})$$
, il existe $Q \in \mathbb{R}[X]$ qui ne dépend que de $Sp(e^A)$ tel que $Q(e^A) = A$.

Soient A, B dans $\mathscr{S}_n(\mathbb{R})$ telles que $e^A = e^B$. D'après le résultat préliminaire, il existe $Q \in \mathbb{R}[X]$ qui ne dépend que du spectre de e^A tel que $A = Q(e^A)$. Le résultat vaut aussi pour B pour les mêmes raisons puisque $e^A = e^B$ d'où

$$A = Q(e^A) = Q(e^B) = B$$

On conclut

L'application exp :
$$\mathscr{S}_n(\mathbb{R}) \to \mathscr{S}_n^{++}(\mathbb{R})$$
 est injective.

4. Soit $A \in \mathscr{S}_n(\mathbb{R})$. D'après le théorème spectral, on dispose de (V_1, \ldots, V_n) base orthonormée de vecteurs colonnes propres associée aux valeurs propres $\lambda_1, \ldots, \lambda_n$. Pour $X = \sum_{i=1}^n x_i V_i \in \mathscr{M}_{n,1}(\mathbb{R})$ avec les x_i coordonnées de X dans (V_1, \ldots, V_n) , il vient avec le théorème de Pythagore

$$\|\mathbf{A}\mathbf{X}\|^2 = \|\sum_{i=1}^n \lambda_i x_i \mathbf{V}_i\|^2 = \sum_{i=1}^n \lambda_i^2 x_i^2 \leqslant \rho(\mathbf{A})^2 \sum_{i=1}^n x_i^2 = \rho(\mathbf{A})^2 \|\mathbf{X}\|^2$$

d'où

$$\|A\|_{op} = \sup_{X \in S(0,1)} \|AX\| \leqslant \rho(A)$$

On note $i_0 \in \llbracket 1 \, ; \, n \, \rrbracket$ tel que $|\lambda_{i_0}| = \rho(\mathbf{A}).$ On obtient

$$\|AX_{i_0}\| = \|\lambda_{i_0}V_{i_0}\| = |\lambda_{i_0}| = \rho(A)$$

On conclut

$$\forall A \in \mathscr{S}_n(\mathbb{R}) \qquad \rho(A) = ||A||_{\text{op}}$$

5.(a) Soit $M \in \mathscr{S}_n^{++}(\mathbb{R})$. Sans difficulté, on vérifie que la matrice M est inversible avec $M^{-1} \in \mathscr{S}_n^{++}(\mathbb{R})$. Après réduction, on a clairement $\mathrm{Sp}\,(M^{-1}) = \{\lambda^{-1}, \lambda \in \mathrm{Sp}\,(M)\}$. Pour $\lambda \in \mathrm{Sp}\,(M)$, on a

$$|\lambda|\leqslant \rho(M)\quad et \quad |\lambda^{-1}|\leqslant \rho(M^{-1})$$

d'où

$$\rho(\mathbf{M}^{-1})^{-1} \leqslant |\lambda| \leqslant \rho(\mathbf{M})$$

On a $B_k \xrightarrow[k \to \infty]{} B$ d'où par continuité de $\|\cdot\|_{op}$

$$\rho(\mathbf{B}_k) = \|\mathbf{B}_k\|_{\mathrm{op}} \xrightarrow[k \to \infty]{} \|\mathbf{B}\|_{\mathrm{op}} = \rho(\mathbf{B}) > 0$$

On dispose de p entier tel que $\rho(B_k) \leq 2\rho(B)$ pour k > p et $\rho(B_k) \leq \max_{i \in [0, p]} \rho(B_i)$ pour $k \leq p$. Ainsi, il existe $\beta > 0$ tel que

$$\forall k \in \mathbb{N} \qquad \rho(\mathbf{B}_k) \leqslant \beta$$

L'inverse matricielle est continue sur $GL_n(\mathbb{R})$ puisqu'elle peut s'écrire $M \mapsto \frac{1}{\det(M)}Com(M)^{\top}$, application à coordonnées rationnelles bien définies. Par conséquent, on a $B_k^{-1} \xrightarrow[k \to \infty]{} B^{-1} \in \mathscr{S}_n^{++}(\mathbb{R})$ et le même raisonnement que précédemment permet d'obtenir l'existence de $\alpha > 0$ tel que

$$\forall k \in \mathbb{N} \qquad \rho(\mathbf{B}_k^{-1}) \leqslant \alpha$$

Par conséquent, pour k entier et $\lambda \in \operatorname{Sp}(B_k)$, on a

$$\alpha^{-1} \leqslant \rho(\mathbf{B}_k^{-1})^{-1} \leqslant |\lambda| \leqslant \rho(\mathbf{B}_k) \leqslant \beta$$

On conclut Les spectres des matrices B_k sont dans un compact commun de \mathbb{R}_+^* .

5.(b) D'après la bijectivité établie aux questions 2 et 3, on dispose pour k entier de $A_k \in \mathscr{S}_n(\mathbb{R})$ unique telle que $B_k = e^{A_k}$ et de $A \in \mathscr{S}_n(\mathbb{R})$ unique telle que $B = e^A$. On cherche alors à montrer $A_k \xrightarrow[k \to \infty]{} A$. Pour $\lambda \in \operatorname{Sp}(A_k)$, on a $e^{\lambda} \in \operatorname{Sp}(B_k)$ d'où $\lambda \in [-\ln(\alpha); \ln(\beta)]$. Ainsi

$$\forall k \in \mathbb{N}$$
 $\|\mathbf{A}_k\|_{\mathrm{op}} = \rho(\mathbf{A}_k) \in [-\ln(\alpha); \ln(\beta)]$

ce qui prouve que la suite $(A_k)_k$ est une suite bornée de l'espace de dimension finie $\mathscr{M}_n(\mathbb{R})$. Pour φ une extractrice telle que la suite $A_{\varphi(k)} \xrightarrow[k \to \infty]{} A'$ avec $A' \in \mathscr{S}_n(\mathbb{R})$ par fermeture, il vient par continuité de l'exponentielle

$$e^{A_{\varphi(k)}} \xrightarrow[k \to \infty]{} e^{A'}$$

Par unicité de la limite, on a $e^{A'} = e^A$ et d'après l'injectivité établie à la question 3, on trouve A' = A. Autrement dit, la suite $(A_k)_k$ à valeurs dans le compact K admet la matrice A pour unique valeur d'adhérence ce qui prouve

$$A_k \xrightarrow[k\to\infty]{} A$$

On conclut L'exponentielle réalise un homéomorphisme de $\mathscr{S}_n(\mathbb{R})$ vers $\mathscr{S}_n^{++}(\mathbb{R})$.

Problème V (bonus)

1. La fonction f admet un nombre fini de zéros sur tout segment de I. En effet, s'il existe une suite $(\alpha_n)_n$ de zéros de f deux à deux distincts de $[a;b] \subset I$, on dispose d'une extractrice φ telle que $\alpha_{\varphi(n)} \xrightarrow[n \to \infty]{} \alpha \in [a;b]$. Par continuité, on a

$$0 = f(\alpha_{\varphi(n)}) \xrightarrow[n \to \infty]{} f(\alpha) = 0$$

Quitte à ré-extraire, on suppose $\alpha_{\varphi(n)} \neq \alpha$ pour n entier. Par dérivabilité en α , il vient

$$0 = \frac{f(\alpha_{\varphi(n)}) - f(\alpha)}{\alpha_{\varphi(n)} - \alpha} \xrightarrow[n \to \infty]{} f'(\alpha)$$

La fonction f serait alors solution du problème de Cauchy

$$\begin{cases} y'' + p_1(t)y = 0 \\ y(\alpha) = y'(\alpha) = 0 \end{cases}$$

et serait donc la fonction nulle ce qui est faux. Les zéros de f sont donc isolés. Soient α , β deux zéros consécutifs de f. Sans perte de généralité, on peut supposer f(t) > 0 pour $t \in]\alpha; \beta[$. On a

$$\forall t \in]\alpha; \beta[$$
 $\frac{f(t) - f(\alpha)}{t - \alpha} \ge 0$ et $\frac{f(t) - f(\beta)}{t - \beta} \le 0$

Faisant tendre $t \to \alpha^+$ dans la première inégalité et $t \to \beta^-$ dans la seconde, il vient

$$f'(\alpha) \geqslant 0$$
 et $f'(\beta) \leqslant 0$

Supposons que g ne s'annule pas sur] α ; β [. Là encore, sans perte de généralité, on peut supposer g(t) > 0 pour $t \in]\alpha$; β [. Par continuité de g sur $[\alpha; \beta]$, on a $g(t) \geqslant 0$ pour $t \in [\alpha; \beta]$. Puis, on considère W = fg' - f'g. La fonction W est dérivable sur I et par dérivation

$$W' = f'g' - f'g' + fg'' - f''g = \underbrace{(p_1 - p_2)}_{\leq 0} fg$$

On en déduit la décroissance de W sur $[\alpha; \beta]$. Puis, on observe

$$W(\alpha) = -f'(\alpha)g(\alpha) \le 0$$
 et $W(\beta) = -f'(\beta)g(\beta) \ge 0$

Par conséquent, la fonction W est nulle sur le segment $[\alpha; \beta]$ ce qui prouve l'existence d'un réel λ tel que $g(t) = \lambda f(t)$ pour tout $t \in [\alpha; \beta]$. On en déduit que g s'annule en α et β . Sinon, la fonction s'annule sur α is α in α . Sinon en déduit que α s'annule sur α is α in α

Entre deux zéros distincts de f, il y a au moins un zéro de g.

2.(a) On a $e^{|t|} \ge 1$ et sin solution de y'' + y = 0. D'après le résultat de la première question, toute solution de (H) admet au moins un zéro dans $[k\pi; (k+1)\pi]$ avec k entier relatif et par conséquent

Toute solution de (H) admet une infinité de zéros.

2.(b) Soit g solution non nulle de (H) et α , β deux zéros consécutifs de g tels que $\beta - \alpha > \pi$. On choisit θ réel tel que $\alpha < \theta < \theta + \pi < \beta$. La fonction $t \mapsto \sin(t - \theta)$ est non nulle et s'annule en θ et $\theta + \pi$. D'après le résultat de la première question, la fonction g admet un zéro dans le segment $[\theta; \theta + \pi]$ ce qui contredit le choix de α et β . On conclut

La distance entre deux zéros consécutifs d'une solution non nulle de (H) est $\leq \pi$.