Feuille d'exercices n°80

Exercice 1 (***)

Soit (G, \times) un groupe et $A \subset G$. On définit le centralisateur de A noté C(A) par

$$C(A) = \{ x \in G \mid \forall a \in A \quad ax = xa \}$$

- 1. Montrer que C(A) est sous-groupe de G et $C(G) \subset C(A)$.
- 2. Montrer que $C(A) = C(\langle A \rangle)$.
- 3. Déterminer $C(S_n)$ pour $n \ge 3$.

Exercice 2 (***)

Soit G un groupe fini vérifiant

$$\forall x \in G \qquad x^2 = e$$

- 1. Montrer que G est un groupe abélien.
- 2. On suppose que G est fini non réduit à $\{e\}$.
 - (a) Justifier l'existence de $n = \min \{ \text{Card P}, P \subset G \text{ tel que } \langle P \rangle = G \}$ entier non nul.
 - (b) Soit $(x_1, \ldots, x_n) \in G^n$ tel que $G = \langle x_1, \ldots, x_n \rangle$. On pose

$$\varphi: (\mathbb{Z}/2\mathbb{Z})^n \to G, \ (\overline{\alpha_1}, \dots, \overline{\alpha_n}) \mapsto x_1^{\alpha_1} \dots x_n^{\alpha_n} \quad \text{avec} \quad \alpha_i \in \{0, 1\}$$

Justifier que φ est bien définie et vérifier que φ est un morphisme de de groupes.

(c) Conclure que

$$G \simeq (\mathbb{Z}/2\mathbb{Z})^n$$

Exercice 3 (***)

Soient p et q des entiers non nuls premiers entre eux. Montrer que l'application $\varphi: \mathbb{U}_p \times \mathbb{U}_q \to \mathbb{U}_{pq}, (x,y) \mapsto xy$ est un isomorphisme de groupes.

Exercice 4 (***)

Soit $n \ge 2$. On note D_n les dérangements de S_n , c'est-à-dire les permutations de S_n sans point fixe. Calculer $\sum_{\sigma \in D_n} \varepsilon(\sigma)$.

Exercice 5 (***)

Soit (G, \star) un groupe cyclique et H un sous-groupe de G. Démontrer que H est cyclique.

Exercice 6 (***)

Soit (G, \times) une groupe fini d'ordre n et $x \in G$ avec o(x) = d. Montrer

$$\forall k \in \mathbb{Z} \qquad o(x^k) = \frac{d}{d \wedge k}$$

1

Exercice 7 (***)

Quel est l'ordre maximal d'un élément de $S_8\,?$

Exercice 8 (***)

Soit φ un morphisme d'un groupe fini (G, \times) vers un autre groupe. Établir Card G= Card Ker $\varphi\times$ Card Im φ

Exercice 9 (****)

Décrire les sous-groupes de $(\mathbb{R}, +)$.