Feuille d'exercices n°84

Exercice 1 (**)

Un idéal I d'un anneau commutatif A est dit premier si

$$\forall x, y \in A \quad xy \in I \Longrightarrow x \in I \text{ ou } y \in I$$

- 1. Décrire les idéaux premiers de \mathbb{Z} .
- 2. Soit A un anneau commutatif, I idéal premier et J, K des idéaux. Montrer que

$$J \cap K = I \implies J = I \text{ ou } K = I$$

Corrigé: 1. Soit I idéal premier de \mathbb{Z} . On suppose $I \neq \{0\}$ sinon c'est immédiat par intégrité de \mathbb{Z} . Il existe p entier non tel que $I = p\mathbb{Z}$. Si p = ab avec a et b > 1, alors $ab \in p\mathbb{Z}$ et $a \notin p\mathbb{Z}$, $b \notin p\mathbb{Z}$. On a donc nécessairement p premier. Supposons p premier. Soient a et b dans \mathbb{Z} tels que p|ab. Alors, on a p|a ou p|b ce qui prouve que I est un idéal premier. Ainsi

Les idéaux premiers de
$$\mathbb{Z}$$
 sont exactement les $p\mathbb{Z}$ avec $p \in \mathcal{P}$.

2. Supposons $J \cap K = I$. Si K = I, il n'y a rien à faire. Supposons $K \neq I$. Soit $x \in J$ et $y \in K \setminus I$. On a $xy \in J$ et $xy \in K$ par absorption d'où $xy \in I$. Comme I est premier, il vient $x \in I$ ou $y \in I$ ce qui est exclu. On en déduit $x \in I$ d'où $J \subset I$ et l'autre inclusion est immédiate par hypothèse. On conclut

$$J \cap K = I \Longrightarrow J = I \text{ ou } K = I$$

Exercice 2 (***)

Un anneau A est dit de Boole si tout élément $x \in A$ vérifie $x^2 = x$. On considère A un anneau de Boole.

- 1. Montrer que pour tout $x \in A$, on a $x + x = 0_A$ et que A est commutatif.
- 2. Soit $(x, y) \in A^2$. Calculer xy(x+y). En déduire que si A possède plus que deux éléments, il n'est pas intègre.

Corrigé: 1. Soit $(x,y) \in A^2$. On rappelle que

et
$$(-x+x)x = 0_A = (-x)x + x^2 \implies (-x)x = -x^2$$

et $(-x)(-x+x) = 0_A = (-x)^2 + (-x)x = (-x)^2 - x^2 \implies (-x)^2 = -x$

On a $x = x^2 = (-x)^2 = -x \implies x + x = 0_A$

puis $(x+y)^2 = x + y \iff x^2 + xy + yx + y^2 = x + y \iff xy + yx = 0_A$

d'où $xy + yx - (xy + xy) = yx - xy = 0_A$

Ainsi On a $x + x = 0_A$ pour tout $x \in A$ et l'anneau A est commutatif.

2. Soit $(x, y) \in A^2$. On a

$$xy(x + y) = yx^2 + xy^2 = yx + xy = xy + xy$$

D'où

$$\forall (x,y) \in A^2$$
 $xy(x+y) = 0_A$

Si A contient au moins trois éléments, on peut choisir $x = 1_A$ et $y \notin \{0_A, 1_A\}$. Ainsi, on a

$$xy(x+y) = y(1_A + y) = 0$$
 et $y \neq -1_A = 1_A$

Si l'anneau A contient plus de deux éléments, alors il n'est pas intègre.

Exercice 3 (****)

On note $A = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, (a, b) \in \mathbb{Z}^2\}$ muni des opérations $(+, \times)$.

- 1. Montrer que A est un anneau commutatif.
- 2. Justifier que pour $x \in A$, l'écriture $x = a + b\sqrt{2}$ avec $(a, b) \in \mathbb{Z}^2$ est unique.
- 3. Pour $x = a + b\sqrt{2} \in A$, on note $N(x) = a^2 2b^2$. Vérifier que

$$\forall (x, y) \in A^2$$
 $N(xy) = N(x)N(y)$

4. Montrer que

$$x \in \mathrm{U}(\mathrm{A}) \iff \mathrm{N}(x) \in \{\pm 1\}$$

5. Montrer que

$$\min U(A) \cap]1; +\infty [=1+\sqrt{2}]$$

- 6. En déduire $x \in U(A) \cap]0; +\infty[\implies \exists n \in \mathbb{Z} \mid x = (1 + \sqrt{2})^n$
- 7. Décrire U(A).

Corrigé: 1. Sans difficulté, on vérifie que A est un sous-anneau de $(\mathbb{R}, +, \times)$ d'où

L'ensemble A est un anneau commutatif.

2. Soit $(a,b) \in \mathbb{Z}^2$ et $(c,d) \in \mathbb{Z}^2$ tel que $a+b\sqrt{2}=c+d\sqrt{2}$. On a $a-c=(b-d)\sqrt{2}$. Si $b-d\neq 0$, alors $\sqrt{2}$ est rationnel ce qui est faux d'où b=d puis a=c et par conséquent

$$\forall x \in A$$
 $\exists ! (a,b) \in \mathbb{Z}^2 \mid x = a + b\sqrt{2}$

3. On pose

$$\varphi \colon \begin{cases} \mathbb{Z}[\sqrt{2}] & \longrightarrow \mathbb{Z}[\sqrt{2}] \\ a + b\sqrt{2} & \longmapsto a - b\sqrt{2} \end{cases}$$

L'application est bien définie puisque le couple $(a,b) \in \mathbb{Z}^2$ est unique pour $x = a + b\sqrt{2} \in A$.

On a

$$\forall x \in A \qquad N(x) = x\varphi(x)$$

puis

$$\forall (x,y) \in \mathcal{A}^2$$
 $\mathcal{N}(xy) = x\varphi(x)y\varphi(y)$

et notant $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$, il vient

$$\varphi(xy) = ac + 2bd - (ad + bc)\sqrt{2} = ac + 2(-b)(-d) + (a(-d) + (-b)c)\sqrt{2} = \varphi(x)\varphi(y)$$

D'où

$$\forall (x,y) \in A^2$$
 $N(xy) = N(x)N(y)$

4. Soit $x \in U(A)$. Il existe $y \in A$ tel que xy = 1 d'où N(x)N(y) = N(xy) = 1. Or, les quantités N(x) et N(y) sont des entiers relatifs donc appartiennent à $U(\mathbb{Z}) = \{\pm 1\}$. Réciproquement, si $N(x) = \pm 1$, alors on a $x\varphi(x) = \pm 1$ d'où $xN(x)\varphi(x) = 1$ autrement dit $x \in U(A)$ avec $x^{-1} = N(x)\varphi(x)$. On conclut

$$x \in \mathrm{U}(\mathrm{A}) \iff \mathrm{N}(x) \in \{\pm 1\}$$

5. On a clairement

$$1 + \sqrt{2} \in \mathrm{U}(\mathrm{A}) \cap]1; +\infty[$$

Soit $x \in \mathrm{U}(\mathrm{A}) \cap]1$; $+\infty$ [. On suppose $x = a - b\sqrt{2}$ avec $(a,b) \in \mathbb{N}^2$. Alors, on a $\varphi(x) = a + b\sqrt{2} > x > 1$ d'où $\mathrm{N}(x) = x\varphi(x) > 1$ ce qui est faux. Si $x = -a + b\sqrt{2}$, alors $-\varphi(x) = a + b\sqrt{2} > x > 1$ d'où $-\mathrm{N}(x) > 1$ ce qui est encore faux. Il s'ensuit que $x = a + b\sqrt{2}$ avec $(a,b) \in \mathbb{N}^2$ et comme les cas a = 0 ou b = 0 sont exclus, il s'ensuit que $x \geqslant 1 + \sqrt{2}$ et on conclut

$$\boxed{\min U(A) \cap] \ 1; +\infty \left[= 1 + \sqrt{2} \right]}$$

6. On a

$$(1+\sqrt{2})^n \xrightarrow[n\to\infty]{} +\infty \quad \text{et} \quad (1+\sqrt{2})^n \xrightarrow[n\to-\infty]{} 0$$

On en déduit la partition de] 0; $+\infty$ [donnée par] 0; $+\infty$ [$=\bigcup_{n\in\mathbb{Z}}$ [$(1+\sqrt{2})^n$; $(1+\sqrt{2})^{n+1}$ [. Par suite, pour $x\in \mathrm{U}(\mathrm{A})$] 0; $+\infty$ [, il existe un unique $n\in\mathbb{Z}$ tel que

$$(1+\sqrt{2})^n \leqslant x < (1+\sqrt{2})^{n+1}$$

d'où

$$1 \leqslant x(1+\sqrt{2})^{-n} < 1+\sqrt{2}$$

Or, on a $x(1+\sqrt{2})^{-n}\in \mathrm{U}(\mathrm{A})$ puisque $\mathrm{U}(\mathrm{A})$ est un groupe multiplicatif. Si on avait $x(1+\sqrt{2})^{-n}>1$, cela contredirait la minimalité de $1+\sqrt{2}$ dans $\mathrm{U}(\mathrm{A})\cap]\,0\,;+\infty\,[$. On en déduit que $x(1+\sqrt{2})^{-n}=1$ autrement dit

$$\forall x \in \mathrm{U}(\mathrm{A}) \cap]0; +\infty [\exists n \in \mathbb{Z} \mid x = (1 + \sqrt{2})^n$$

7. On a clairement $0 \notin \mathrm{U}(\mathrm{A})$ et si $x \in \mathrm{U}(\mathrm{A}) \cap]-\infty$; 0[, alors $-x \in \mathrm{U}(\mathrm{A}) \cap]0$; $+\infty[$ et le résultat précédent s'applique. On conclut

$$U(A) = \left\{ \pm (1 + \sqrt{2})^n, n \in \mathbb{Z} \right\}$$

Exercice 4 (****)

Soient $\alpha > \beta$ les racines de $P = X^2 - X - 1$. On pose $A = \{x + \alpha y, (x, y) \in \mathbb{Z}^2\}$ et l'application $\sigma : A \to \mathbb{R}, x + \alpha y \mapsto x + \beta y$.

- 1. Montrer que A est un anneau et que σ est un automorphisme de A. Expliciter σ^{-1} .
- 2. On note U l'ensemble des inversibles de A et N : A $\to \mathbb{R}, z \mapsto z\sigma(z)$.
 - (a) Pour $z \in A$, montrer $z \in U \iff |N(z)| = 1$
 - (b) Soit $V = U \cap]1; +\infty[$, montrer que si $x + \alpha y \in V$, alors $x \geqslant 0$ et $y \geqslant 1$.
 - (c) En déduire

$$V = \{\alpha^n, n \in \mathbb{N}^*\}$$

Corrigé: 1. On trouve $\alpha = \frac{1+\sqrt{5}}{2}$ et $\beta = \frac{1-\sqrt{5}}{2}$. On a $1 \in A$. Soit $(u,v) \in A^2$ avec $u = x + \alpha y, v = z + \alpha t$ où x, y, z et t sont entiers relatifs. On trouve

$$uv = (x + \alpha y)(z + \alpha t) = xz + \alpha(yz + xt) + \alpha^2 yt$$
$$= xz + \alpha(yz + xt) + (1 + \alpha)yt = xz + yt + \alpha(yz + xt + yt) \in A$$

et

$$u + v = x + z + \alpha(y + t) \in A$$

Ainsi L'ensemble A est un sous-anneau de $(\mathbb{R}, +, \times)$ donc est un anneau.

Vérifions que σ est bien défini. On a

$$u = v \iff x + \alpha y = z + \alpha t \iff x - z = \alpha (y - t)$$

On en déduit

$$x = z \iff y \neq t$$

Si $y \neq t$, alors $\alpha = \frac{x-z}{y-t} \in \mathbb{Q}$ ce qui est absurde d'où y=t et par suite x=z. L'écriture d'un élément de A est donc unique ce qui prouve que l'application σ est bien définie. Puis, on a

$$\sigma(u+v) = x + z + \beta(y+t) = x + \beta y + z + \beta t = \sigma(u) + \sigma(v)$$

et

 $\sigma(uv) = xz + yt + \beta(yz + xt + yt)$ et $\sigma(u)\sigma(v) = (x + \beta y)(z + \beta t) = xz + yz + \beta(yz + xt + yt)$ Avec $\alpha\beta = -1$, il vient

$$\sigma(\alpha\beta) = \sigma(\alpha)\sigma(\beta) = -1$$

d'où

$$\sigma(\beta) = -\frac{1}{\beta} = \alpha$$

Ainsi

$$\sigma^2(x + \alpha y) = \sigma(x + \beta y) = x + \alpha y$$

On conclut

L'application est un automorphisme d'anneau avec $\sigma^{-1} = \sigma$.

2.(a) Soit $u \in U$ avec $u = x + \alpha y$, x et y entiers relatifs. Avec $\alpha \beta = -1$ et $\alpha + \beta = 1$, il vient

$$N(u) = u\sigma(u) = (x + \alpha y)(x + \beta y) = x^2 - y^2 + xy \in \mathbb{Z}$$

S'il existe $v \in U$ tel que uv = 1, alors

$$N(uv) = uv\sigma(uv) = u\sigma(u)v\sigma(v) = N(u)N(v)$$
 et $N(uv) = N(1) = 1$

On en déduit que $N(u) \in U(\mathbb{Z}) = \{-1, 1\}$. Réciproquement, on a

$$N(u) = \pm 1 \iff (x + \alpha y)(x + \beta y) = \pm 1 \iff u(\pm \sigma(u)) = 1$$

ce qui prouve que $u \in U$. On conclut

$$U = \{u \in A : |N(u)| = 1\}$$

2.(b) Soit $u \in V$. Supposons que $u = x - \alpha y$ avec $(x, y) \in \mathbb{N}^2$. Comme $-\alpha < 0$ et $-\beta > 0$, on a clairement $x - \beta y \geqslant x - \alpha y > 1$ puis

$$N(u) = (x - \alpha y)(x - \beta y) > 1$$

ce qui contredit $u \in U$. Supposons que $u = -x + \alpha y$ avec $(x, y) \in \mathbb{N}^2$. Comme $-x + \alpha y > 1$, on a nécessairement $y \ge 1$. Si $x \ge 1$, alors $-x + \beta y \le -1 + \beta$ et on a

$$N(u) = \underbrace{(-x + \alpha y)}_{>1} \underbrace{(-x + \beta y)}_{\leqslant -1 + \beta} < -1$$

ce qui contredit $u \in U$. On conclut

Pour
$$(x, y) \in \mathbb{Z}^2$$
, si $x + \alpha y \in V$, alors $x \ge 0$ et $y \ge 1$.

2.(c) D'après le résultat précédent, on a $\alpha=\operatorname{Min}$ V. On en déduit $\{\alpha^n,n\in\mathbb{N}^*\}\subset V$. Réciproquement, soit $x\in V$. On observe que $\alpha^n\xrightarrow[n\to\infty]{}+\infty$ d'où $V\subset [\alpha\,;+\infty\,[\,=\,\bigcup_{n\in\mathbb{N}^*}\big[\alpha^n\,;\alpha^{n+1}\,\big[.$ Par

conséquent, il existe n entier non nul tel que $x \in [\alpha^n; \alpha^{n+1}[$ d'où $1 \le x(-\beta)^n < \alpha$. Comme U est un groupe multiplicatif, on a $x(-\beta)^n \in U$. Si $x(-\beta)^n > 1$, alors on aurait $x(-\beta)^n \ge \min V = \alpha$ ce qui est faux. On en déduit $x(-\beta)^n = 1$ d'où $x = \alpha^n$. On conclut

$$V = \{\alpha^n, n \in \mathbb{N}^*\}$$