Feuille d'exercices n°12

Exercice 1 (***)

Soient $f, g: I \to \mathbb{R}$ convexes, positives vérifiant

$$\forall (x,y) \in \mathcal{I}^2 \qquad (f(x) - f(y)) (g(x) - g(y)) \geqslant 0$$

Montrer que le produit fg est convexe.

Corrigé: Supposons dans un premier temps f et g deux fois dérivables. Par dérivation, on a

$$(fg)' = f'g + fg'$$
 $(fg)'' = f''g + 2f'g' + fg''$

Comme les fonctions f et g ont même variation, le produit f'g' est positif et tous les autres termes intervenant dans (fg)'' sont positifs d'où la convexité de fg. Vérifions que le résultat a lieu sans l'hypothèse de dérivabilité. Soit $(x, y) \in I^2$. On pose

$$\forall \lambda \in [0;1]$$
 $\Delta(\lambda) = \lambda f g(x) + (1-\lambda) f g(y) - f g(\lambda x + (1-\lambda)y)$

En faisant le produit des inégalités de convexité pour f et g qui sont positives, on obtient pour $\lambda \in [0;1]$

$$\Delta(\lambda) \geqslant \lambda f g(x) + (1 - \lambda) f g(y) - (\lambda f(x) + (1 - \lambda) f(y)) (\lambda g(x) + (1 - \lambda) g(y))$$

On développe, on factorise et on obtient

$$\Delta(\lambda) \geqslant \lambda(1-\lambda) \left(fg(x) + fg(y) - f(x)g(y) - f(y)g(x) \right)$$

Enfin, en observant l'égalité

$$(fg(x) + fg(y) - f(x)g(y) - f(y)g(x)) = (f(x) - f(y))(g(x) - g(y))$$

On obtient

$$\Delta(\lambda) \geqslant \lambda(1-\lambda) (f(x) - f(y)) (g(x) - g(y))$$

Comme les fonctions f et g ont même variations, le produit (f(x) - f(y))(g(x) - g(y)) est positif et on obtient

$$\forall \lambda \in [0;1] \qquad \Delta(\lambda) \geqslant 0$$

Autrement dit

Le produit fg est convexe.

Exercice 2 (***)

Soit (Ω, \mathbb{P}) un espace probabilisé fini. Pour X variable aléatoire, on définit *l'entropie* de X notée H(X) par

$$H(X) = -\sum_{x \in X(\Omega)} \mathbb{P}(X = x) \ln (\mathbb{P}(X = x))$$

avec pour convention $0 \ln(0) = 0$. Intuitivement, l'entropie correspond à la quantité d'information délivrée par la variable aléatoire X ou encore à l'incertitude (ou désordre) liée aux valeurs prises par X.

1. Montrer
$$0\leqslant H(X)\leqslant \ln\left(\mathrm{Card}\ X(\Omega)\right)$$

2. Montrer
$$H(X) = 0 \iff \exists a \in X(\Omega) \mid \mathbb{P}(X = a) = 1$$

3. Montrer
$$H(X) = \ln (\operatorname{Card} X(\Omega)) \iff X \sim \mathcal{U}_{X(\Omega)}$$

Corrigé: 1. La minoration est immédiate. Notons $n = \operatorname{Card} X(\Omega)$. Posons $f(u) = -u \ln u$ pour u > 0. On a f dérivable et $f'(u) = -(\ln(u) + 1)$ pour u > 0 d'où f' décroissante et par conséquent f concave. En considérant la tangente en 1 et avec la convention $0 \ln(0) = 0$, on obtient

$$\forall u \geqslant 0 \qquad -u \ln(u) \leqslant 1 - u$$

On l'applique à $n\mathbb{P}(X = x)$ pour $x \in X(\Omega)$ et il vient

$$\forall x \in \mathcal{X}(\Omega) \qquad -n\mathbb{P}(\mathcal{X} = x) \left(\ln(n) + \ln\left(\mathbb{P}(\mathcal{X} = x)\right) \right) \leqslant 1 - n\mathbb{P}(\mathcal{X} = x)$$

D'où
$$-n\ln(n)\underbrace{\sum_{x\in\mathcal{X}(\Omega)}\mathbb{P}(\mathcal{X}=x)}_{=1}+n\mathcal{H}(\mathcal{X})\leqslant\underbrace{\sum_{x\in\mathcal{X}(\Omega)}1-n}_{=n}\underbrace{\sum_{x\in\mathcal{X}(\Omega)}\mathbb{P}(\mathcal{X}=x)}_{=1}=n-n=0$$

ce qui prouve $H(X) \leq \ln n$ autrement dit

$$0 \leqslant H(X) \leqslant \ln \left(\operatorname{Card} X(\Omega) \right)$$

2. Supposons qu'il existe $a \in X(\Omega)$ tel que $\mathbb{P}(X = a) = 1$. Par conséquent

$$\forall x \in \mathcal{X}(\Omega) \setminus \{a\}$$
 $0 \leqslant \mathbb{P}(\mathcal{X} = x) \leqslant \mathbb{P}(\mathcal{X} \neq 1) = 1 - \mathbb{P}(\mathcal{X} = a) = 0$

Ainsi
$$H(X) = -\sum_{x \in X(\Omega)} \mathbb{P}(X = x) \times \ln \left(\mathbb{P}(X = x) \right)$$
$$= -\mathbb{P}(X = a) \underbrace{\ln \mathbb{P}(X = a)}_{=0} - \sum_{x \in X(\Omega) \setminus \{a\}} \underbrace{\mathbb{P}(X = x) \ln \left(\mathbb{P}(X = x) \right)}_{=0} = 0$$

Réciproquement, supposons H(X) = 0. On a

$$H(X) = \sum_{x \in X(\Omega)} \underbrace{-\mathbb{P}(X = x) \times \ln(\mathbb{P}(X = x))}_{\geq 0}$$

Il s'agit d'une somme de termes positifs donc H(X) est nulle si et seulement chaque terme de la somme est nul et par suite

$$\forall x \in X(\Omega)$$
 $\mathbb{P}(X = x) > 0$ \Longrightarrow $\mathbb{P}(X = x) = 1$

Or la famille $(\{X = x\})_{x \in X(\Omega)}$ forme un système complet d'événements donc $\sum_{x \in X(\Omega)} \mathbb{P}(X = x) = 1$ donc il existe nécessairement $a \in X(\Omega)$ tel que $\mathbb{P}(X = a) > 0$ et par conséquent $\mathbb{P}(X = a) = 1$.

On a donc montré

$$H(X) = 0 \iff \exists a \in X(\Omega) \mid \mathbb{P}(X = a) = 1$$

3. Notons $n = \text{Card } X(\Omega)$. Supposons $X \sim \mathcal{U}_{X(\Omega)}$. Il vient

$$H(X) = -\sum_{x \in X(\Omega)} \frac{1}{n} \ln \left(\frac{1}{n}\right) = -\ln \left(\frac{1}{n}\right) = \ln(n)$$

Réciproquement, supposons $H(X) = \ln(n)$. En considérant que l'inégalité de la question 1 est une égalité, on obtient

$$\sum_{x \in \mathcal{X}(\Omega)} \left[-n\mathbb{P}(\mathcal{X} = x) \ln \left(n\mathbb{P}(\mathcal{X} = x) \right) - \left(1 - n\mathbb{P}(\mathcal{X} = x) \right) \right] = 0$$

et d'après l'inégalité $-u \ln(u) \leq 1 - u$ pour $u \geq 0$, les termes de la somme sont négatifs d'où

$$\forall x \in \mathcal{X}(\Omega) \qquad -n\mathbb{P}(\mathcal{X} = x) \ln (n\mathbb{P}(\mathcal{X} = x)) = 1 - n\mathbb{P}(\mathcal{X} = x)$$

Or l'inégalité $-u \ln(u) \leq 1 - u$ est une égalité pour $u \geq 0$ si et seulement si u = 1 (faire une étude de fonctions) d'où

$$\forall x \in \mathbf{X}(\Omega)$$
 $n\mathbb{P}(\mathbf{X} = x) = 1$

Ainsi

$$\boxed{H(X) = \ln \left(\mathrm{Card} \ X(\Omega) \right) \iff X \sim \mathscr{U}_{X(\Omega)}}$$

Exercice 3 (***)

Soit E un \mathbb{R} -ev. Pour X \subset E, on définit l'enveloppe convexe de X par

$$\operatorname{Conv}(X) = \bigcap_{K \text{ convexe } \supset X} K$$

- 1. Justifier qu'il s'agit du plus petit convexe contenant X.
- 2. Montrer que l'enveloppe convexe de X est l'ensemble des combinaisons convexes de X, *i.e.*

$$Conv(X) = \left\{ \sum_{i=1}^{n} \alpha_i x_i, n \geqslant 1, (x_i)_{i \in \llbracket 1; n \rrbracket} \in X^n, (\alpha_i)_{i \in \llbracket 1; n \rrbracket} \in \mathbb{R}_+^n \quad \text{et} \quad \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

Corrigé: 1. Comme une intersection de convexes est un convexe, l'ensemble Conv(X) est un convexe et il est, par définition, inclus dans tout convexe de E contenant X d'où

2. Soient x, y des combinaisons convexes de X, c'est-à-dire

$$x = \sum_{i=1}^{n} \alpha_i x_i$$
 et $y = \sum_{i=1}^{m} \mu_j y_j$

avec n, m entiers non nuls, les $\alpha_i, \mu_j \ge 0$ vérifiant $\sum_{i=1}^n \alpha_i = \sum_{j=1}^m \mu_j = 1$ et les x_i, y_j dans X. Pour $\lambda \in [0; 1]$, on a

$$\lambda x + (1 - \lambda)y = \sum_{i=1}^{n} \lambda \alpha_i x_i + \sum_{j=1}^{m} (1 - \lambda)\mu_j y_j$$

Les scalaires $\lambda \alpha_i$, $(1-\lambda)\mu_j$ sont positifs et $\sum_{i=1}^n \lambda \alpha_i + \sum_{j=1}^m (1-\lambda)\mu_j = 1$ ce qui prouve que l'ensemble des combinaisons convexes de X est un convexe et qui contient clairement X. Ainsi, l'enveloppe convexe est contenue dans l'ensemble des combinaisons convexes de X. Puis, comme l'enveloppe convexe de X est convexe, elle est égale à l'ensemble des combinaisons convexes de ses vecteurs. Ainsi, l'enveloppe convexe contient l'ensemble des combinaisons convexes de X. On conclut

$$Conv(X) = \left\{ \sum_{i=1}^{n} \alpha_i x_i, n \geqslant 1, (x_i)_{i \in \llbracket 1; n \rrbracket} \in X^n, (\alpha_i)_{i \in \llbracket 1; n \rrbracket} \in \mathbb{R}_+^n \quad \text{et} \quad \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

Exercice 4 (***)

Soit $P \in \mathbb{C}[X]$ avec deg $P \geqslant 1$. L'ensemble des racines de P' est contenu dans l'enveloppe convexe des racines de P.

Corrigé : On écrit $P = \prod_{i=1}^r (X - \lambda_i)^{m_i}$ écriture scindée dans $\mathbb{C}[X]$ avec les λ_i racines de P. On a

$$\frac{P'}{P} = \sum_{i=1}^{r} \frac{m_i}{X - \lambda_i}$$

Soit α une racine de P' non racine de P (sinon, c'est trivial). On obtient, en multipliant par le conjugué puis en conjuguant l'expression finale

$$P'(\alpha) = 0 \iff \sum_{i=1}^{r} \frac{m_i}{\alpha - \lambda_i} = 0 \iff \sum_{i=1}^{r} \frac{m_i(\alpha - \lambda_i)}{|\alpha - \lambda_i|^2} = 0$$

On pose

$$M = \sum_{i=1}^{r} \frac{m_i}{|\alpha - \lambda_i|^2}$$
 et $\forall i \in [1; r]$ $\mu_i = \frac{1}{M} \frac{m_i}{|\alpha - \lambda_i|^2}$

On a

$$\alpha = \sum_{i=1}^{r} \mu_i \lambda_i$$
 avec $\forall i \in [1; r]$ $\mu_i \geqslant 0$ et $\sum_{i=1}^{r} \mu_i = 1$

Ainsi

L'ensemble des racines de P' est contenu dans l'enveloppe convexe des racines de P.

Remarque : Il s'agit du théorème de Gauss-Lucas.

Exercice 5 (***)

Soit $f:[0;1] \to \mathbb{R}$ convexe dérivable. Montrer

$$0 \leqslant \frac{f(0) + f(1)}{2} - \int_0^1 f(t) \, dt \leqslant \frac{f'(1) - f'(0)}{8}$$

Corrigé: Par convexité, le graphe de f est sous la corde entre 0 et 1 d'où

$$\forall t \in [0;1]$$
 $f(t) \leq f(0) + t(f(1) - f(0))$

Et après intégration

$$\int_0^1 f(t) dt \le \int_0^1 \left(f(0) + t \left(f(1) - f(0) \right) \right) dt = \frac{f(1) + f(0)}{2}$$

Toujours par convexité, le graphe de f se situant au dessus des tangentes prises en 0 et 1, on a

$$\forall t \in \left[0; \frac{1}{2}\right] \qquad f(t) \geqslant f(0) + f'(0)t \quad \text{et} \quad \forall t \in \left[\frac{1}{2}; 1\right] \qquad f(t) \geqslant f(1) + f'(1)(t-1)$$

Ainsi, après intégration

$$\int_{0}^{1} f(t) dt \ge \int_{0}^{\frac{1}{2}} (f(0) + f'(0)t) dt + \int_{\frac{1}{2}}^{1} (f(1) + f'(1)(t - 1)) dt$$

$$\ge \frac{f(0) + f(1)}{2} + \frac{f'(0) - f'(1)}{8}$$

On conclut

$$0 \leqslant \frac{f(0) + f(1)}{2} - \int_0^1 f(t) \, dt \leqslant \frac{f'(1) - f'(0)}{8}$$

Exercice 6 (****)

Soit $f: \mathbb{R} \to \mathbb{R}$ convexe dérivable.

- 1. Montrer que g(x) = f(x) xf'(x) admet une limite (finie ou infinie) pour $x \to +\infty$.
- 2. On suppose que g admet une limite finie p pour $x \to +\infty$. Montrer que $\frac{f(x)}{x}$ et f'(x) admettent une même limite finie m pour $x \to +\infty$.

$$f(x) - mx - p \xrightarrow[x \to +\infty]{} 0$$

Corrigé : 1. En supposant f deux fois dérivable, on trouve $g'(x) = -xf''(x) \le 0$ pour $x \ge 0$. Montrons ce résultat avec les hypothèses du sujet. Soit $y > x \ge 0$. On a

$$g(y) - g(x) = \underbrace{f(y) + (x - y)f'(y) - f(x)}_{\leq 0} + x \underbrace{[f('(x) - f'(y))]}_{\leq 0}$$

La première inégalité résulte de la position graphe/tangente en y et la deuxième vient par croissance de f'.

On en déduit

$$\forall y \geqslant x \geqslant 0$$
 $g(y) - g(x) \leqslant 0$

Ainsi, la fonction g décroît sur $[0; +\infty[$ et d'après le théorème de limite monotone

La fonction g admet une limite finie ou infinie en $+\infty$.

2. Posons

$$\forall x > 0$$
 $\varphi(x) = \frac{f(x) - p}{x}$ et $\psi(x) = \frac{f(x) - f(0)}{x}$

Par dérivation, on a

$$\forall x > 0$$
 $\varphi'(x) - \frac{1}{x^2} [f(x) - xf'(x) - p] = -\frac{g(x) - p}{x^2}$

et

$$\forall x > 0$$
 $\psi'(x) = -\frac{1}{x^2} [f(x) - xf'(x) - f(0)] = -\frac{g(x) - f(0)}{x^2}$

La fonction g étant décroissante, on a $p \leq g(x) \leq g(0)$ pour tout $x \geqslant 0$ on en déduit

$$\forall x > 0$$
 $\varphi'(x) \leqslant 0$ et $\psi'(x) \geqslant 0$

et on a également

$$\forall x > 0 \qquad \psi(x) \leqslant \varphi(x)$$

Ainsi

$$\forall x \geqslant 1$$
 $\psi(1) \leqslant \psi(x) \leqslant \varphi(x) \leqslant \varphi(1)$

Par limite monotone, les fonctions φ et ψ admettent donc des limites finies en $+\infty$. Enfin, on a

$$\forall x > 0$$
 $\varphi(x) - \psi(x) = \frac{f(0) - p}{r} \xrightarrow[r \to +\infty]{} 0$

On en déduit que les fonctions φ et ψ admettent une même limite finie m en $+\infty$. Ainsi, on obtient pour x>0

$$\frac{f(x)}{x} = \varphi(x) + \frac{p}{x} = m + o(1) \text{ et } f'(x) = \frac{f(x)}{x} - \frac{g(x)}{x} = m + o(1) + \frac{p + o(1)}{x}$$

On conclut

Les fonctions
$$\frac{f(x)}{x}$$
 et $f'(x)$ admettent une même limite finie m pour $x \to +\infty$.

Remarque: On a mis en œuvre une version continue du résultat des suites adjacentes.

Variantes: (a) Avec des hypothèses un peu renforcées, on peut procéder différemment, sans l'introduction des fonctions φ et ψ qui n'est pas complètement évidente. Supposons $f \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$.

On pose
$$\forall x > 0 \qquad h(x) = \frac{f(x)}{x}$$

La fonction h est dérivable sur] 0; $+\infty$ [comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas et par dérivation

$$\forall x > 0$$
 $h'(x) = \frac{xf'(x) - f(x)}{r^2} = \frac{g(x)}{r^2}$

Par hypothèse, il existe $M \ge 0$ et tel que $|g(x)| \le M$ pour $x \ge 1$. Par suite

$$\forall x \geqslant 1$$
 $|h(x) - h(1)| = \left| \int_{1}^{x} h'(t) \, dt \right| \leqslant \int_{1}^{x} \frac{M dt}{t^2} \leqslant M$

Par conséquent, la fonction h n'admet pas de limite infinie en $+\infty$. Or, on a

$$g(x) \underset{+\infty}{=} O(1) \implies h(x) - f'(x) = \frac{g(x)}{x} \underset{+\infty}{=} o(1)$$

et comme f' croît par convexité de f, celle-ci admet une limite finie ou infinie en $+\infty$ d'après le théorème de limite monotone et de même pour h d'après l'égalité précédente. On retrouve alors le résultat attendu.

(b) On peut conserver l'idée du contrôle de h avec seulement l'hypothèse de dérivabilité de f en suivant un démarche discrétisée. Pour $x \ge 1$, on décompose

$$h(x) - h(1) = \sum_{k=1}^{\lfloor x \rfloor - 1} [h(k+1) - h(k)] + h(x) - h(\lfloor x \rfloor)$$

D'après l'inégalité des accroissements finis, on a

$$\forall k \geqslant 1$$
 $|h(k+1) - h(k)| \leqslant \frac{M}{k^2}$ et $\forall x \geqslant 1$ $|h(x) - h(\lfloor x \rfloor)| \leqslant \frac{M}{\lfloor x \rfloor^2}$

Ainsi

$$\forall x \geqslant 1$$
 $|h(x) - h(1)| \leqslant \sum_{k=1}^{\lfloor x \rfloor} \frac{M}{k^2} \underset{x \to +\infty}{=} O(1)$

On conclut comme précédemment.

3. La fonction φ décroît et $\varphi(x) \xrightarrow[x \to +\infty]{} m$ d'où $\varphi(x) \geqslant m$ pour tout x > 0 et par conséquent

$$\forall x > 0$$
 $f(x) - mx \geqslant p$

Par ailleurs, comme f' croît et tend vers m en $+\infty$, on obtient

$$\forall x > 0$$
 $p \leqslant f(x) - mx \leqslant f(x) - xf'(x)$

Par encadrement

$$f(x) - mx - p \xrightarrow[x \to +\infty]{} 0$$

Exercice 7 (****)

Soit E un \mathbb{R} -ev de dimension n et $X \subset E$. Montrer que tout élément de Conv(X) peut s'écrire comme combinaison convexe de n+1 éléments de X.

Corrigé : Soit $x \in \text{Conv}(X)$. On a $x = \sum_{i=1}^{p} \alpha_i x_i$ avec les $\alpha_i \geqslant 0$ tels que $\sum_{i=1}^{p} \alpha_i = 1$ et les x_i dans X. On suppose p > n+1. Par suite, la famille $(x_2 - x_1, x_3 - x_1, \dots, x_p - x_1)$ est liée. Il existe des réels β_i non tous nuls tels que $\sum_{i=2}^{p} \beta_i (x_i - x_1) = 0$. On pose $\beta_1 = -\sum_{i=2}^{p} \beta_i$. Ainsi, on a $\sum_{i=1}^{p} \beta_i x_i = 0$ et par suite

$$\forall t \in \mathbb{R}$$
 $x = \sum_{i=1}^{p} (\alpha_i + t\beta_i) x_i$

Comme les β_i ne sont pas tous nuls et de somme nulle, l'un d'entre eux est strictement négatif. On pose

$$\tau = \min \left\{ -\frac{\alpha_i}{\beta_i}, \beta_i < 0 \right\} \quad \text{et} \quad \forall i \in [1; p] \qquad \lambda_i = \alpha_i + \tau \beta_i$$

Si $\beta_i \geqslant 0$, alors $\lambda_i \geqslant 0$ comme somme de termes positifs. Si $\beta_i < 0$ alors $-\frac{\alpha_i}{\beta_i} \geqslant \tau \iff \lambda_i \geqslant 0$. Ainsi, les λ_i sont positifs, de somme égale à 1 et il existe un i_0 tel que λ_{i_0} est nul (l'indice qui réalise le minimum dans la définition de τ). Il vient

$$x = \underset{i \in [\![1]\!] \smallsetminus \{i_0\}}{\sum} \lambda_i x_i$$

On est donc passé pour l'écriture de x d'une combinaison convexe de p éléments à une combinaison convexe de p-1 éléments. En itérant, ce procédé, on se ramène à n+1 éléments. On conclut

Tout élément de Conv(X) peut s'écrire comme combinaison convexe de n+1 éléments de X.

Remarque : Il s'agit du théorème de Carathéodory.