Feuille d'exercices n°11

Exercice 1 (**)

Soit $f:]0; +\infty[\rightarrow \mathbb{R}, \text{ concave, dérivable, croissante.}]$

- 1. Montrer $\forall x > 1$ $f(x+1) f(x) \leq f'(x) \leq f(x) f(x-1)$
- 2. On définit les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ par

$$\forall n \in \mathbb{N}^*$$
 $u_n = \left(\sum_{k=1}^n f'(k)\right) - f(n)$ $v_n = \left(\sum_{k=1}^n f'(k)\right) - f(n+1)$

Établir la convergence de $(u_n)_n$ et $(v_n)_n$.

3. Pour $f(x) = \ln(x)$ avec x > 0, déterminer un encadrement de $\gamma = \lim_{n \to +\infty} u_n$ à $\varepsilon > 0$ près.

Exercice 2 (***)

Soit $f: \mathbb{R} \to]0$; $+\infty$ [. Montrer

$$\ln \circ f$$
 convexe $\iff \forall \alpha > 0$ f^{α} convexe

Exercice 3 (***)

Soit $f: \mathbb{R} \to \mathbb{R}$ convexe. Montrer que f est continue.

Exercice 4 (***)

Soit I intervalle ouvert de \mathbb{R} et $f: \mathbb{I} \to \mathbb{R}$ convexe. Montrer que f est dérivable à droite et à gauche en tout point de I.

Exercice 5 (***)

Soit x_1, \ldots, x_n des réels positifs.

- 1. Établir $\sqrt[n]{\prod_{i=1}^n x_i} \leqslant \frac{1}{n} \sum_{i=1}^n x_i$
- 2. Montrer que cette inégalité est une égalité si et seulement si $x_1 = \ldots = x_n$.

Exercice 6 (****)

Soit $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ vérifiant

$$\forall (x,y) \in \mathbb{R}^2$$
 $f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}$

Montrer que f est convexe.

Exercice 7 (Hölder, Minkowski ****)

Soient p,q>1 tels que $\frac{1}{p}+\frac{1}{q}=1$, I un intervalle et f,g continues sur I, positives.

1. Soient $a, b \ge 0$. Montrer

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

2. On suppose f^p et g^q intégrables sur I. Montrer que fg est intégrable sur I et

$$\int_{\mathcal{I}} fg \leqslant \left(\int_{\mathcal{I}} f^p\right)^{1/p} \left(\int_{\mathcal{I}} g^q\right)^{1/q}$$

3. On suppose f^p et g^p intégrables sur I. Montrer que $(f+g)^p$ est intégrable sur I et

$$\left(\int_{\mathbf{I}} (f+g)^p\right)^{1/p} \leqslant \left(\int_{\mathbf{I}} f^p\right)^{1/p} + \left(\int_{\mathbf{I}} g^p\right)^{1/p}$$