Feuille d'exercices n°02

Exercice 1 (**)

Vérifier l'existence puis calculer les intégrales suivantes :

1.
$$\int_0^{+\infty} \frac{\mathrm{d}t}{t^2 + t + 1}$$

2.
$$\int_{0}^{1} \frac{\ln(1-t^2)}{t^2} dt$$

$$3. \int_0^\pi \frac{\mathrm{d}t}{\sqrt{2} + \cos(t)}$$

Corrigé: 1. On a
$$\int_{-\infty}^{\infty} \frac{dt}{t^2 + t + 1} = \int_{-\infty}^{\infty} \frac{dt}{\left(t + \frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{2}{\sqrt{3}} \operatorname{Arctan}\left(\frac{2x + 1}{\sqrt{3}}\right)$$

D'où

$$\int_0^{+\infty} \frac{\mathrm{d}t}{t^2 + t + 1} = \frac{2}{\sqrt{3}} \left[\frac{\pi}{2} - \frac{\pi}{6} \right] = \frac{2\pi}{3\sqrt{3}}$$

2. On choisit une primitive de $t \mapsto \frac{1}{t^2}$ qui s'annule en 1, à savoir $t \mapsto 1 - \frac{1}{t} = \frac{t-1}{t}$. Les fonctions $t \mapsto \frac{t-1}{t}$ et $t \mapsto \ln(1-t^2)$ sont de classe \mathscr{C}^1 sur] 0;1 [. On a

$$\left(\frac{t-1}{t}\right)\ln(1-t^2) \underset{t\to 0}{\sim} \frac{-(-t^2)}{t} \underset{t\to 0}{\sim} t \xrightarrow[t\to 0]{} 0 \quad \text{et} \quad \left(\frac{t-1}{t}\right)\ln(1-t^2) = -\frac{(1-t^2)\ln(1-t^2)}{t(t+1)} \xrightarrow[t\to 1]{} 0 = -\frac{(1-$$

en utilisant la limite $u \ln u \xrightarrow[u \to 0]{} 0$. Ainsi, le crochet $\left[\frac{t-1}{t}\ln(1-t^2)\right]$ admet des limites finies en 0 et 1 et par conséquent, les intégrales

$$\int_0^1 \frac{\ln(1-t^2)}{t^2} dt \quad \text{et} \quad \int_0^1 \frac{t-1}{t} \frac{-2t}{1-t^2} dt$$

sont de même nature. Or on a

$$\int_0^1 \frac{t-1}{t} \frac{-2t}{1-t^2} \, \mathrm{d}t = \int_0^1 \frac{2}{1+t} \, \mathrm{d}t$$

qui est clairement convergente puisque l'intégrale est faussement impropre en 0 et 1. Par conséquent, on a l'égalité

$$\int_0^1 \frac{\ln(1-t^2)}{t^2} dt = \left[\frac{t-1}{t} \ln(1-t^2) \right]_0^1 - \int_0^1 \frac{2}{1+t} dt = -\int_0^1 \frac{2}{1+t} dt$$

On conclut

$$\int_0^1 \frac{\ln(1-t^2)}{t^2} \, \mathrm{d}t = -2\ln(2)$$

3. Il s'agit d'une intégrale de fonction continue sur un segment! On pose $u=\tan\left(\frac{t}{2}\right)\iff t=\varphi(u)=2\operatorname{Arctan}(u)$ bijection \mathscr{C}^1 strictement croissante de $]\,0\,;+\infty\,[$ sur $]\,0\,;\frac{\pi}{2}\,[$. Par trigonométrie, on a

$$\cos(t) = \cos\left(2\frac{t}{2}\right) = \cos^2\left(\frac{t}{2}\right) - \sin^2\left(\frac{t}{2}\right) = \frac{1 - u^2}{1 + u^2}$$

et
$$\cos(t) = 2\sin\left(\frac{t}{2}\right)\cos\left(\frac{t}{2}\right) = 2\cos\left(\frac{t}{2}\right)\tan\left(\frac{t}{2}\right) = \frac{2u}{1+u^2}$$
 et $dt = \frac{2\,du}{1+u^2}$

Les intégrales $\int_0^{\pi} \frac{\mathrm{d}t}{\sqrt{2} + \cos(t)} \, \mathrm{et} \int_0^{+\infty} \frac{2 \, \mathrm{d}u}{(1 + u^2) \left(\sqrt{2} + \frac{1 - u^2}{1 + u^2}\right)} \, \mathrm{sont} \, \mathrm{de} \, \mathrm{même} \, \mathrm{nature} \, \mathrm{donc} \, \mathrm{conversion}$

gentes et par conséquent égales. Ainsi, en observant que $(\sqrt{2}-1)(\sqrt{2}+1)=1$, on trouve

$$\int_0^{\pi} \frac{\mathrm{d}t}{\sqrt{2} + \cos(t)} = \frac{2}{\sqrt{2} - 1} \int_0^{+\infty} \frac{\mathrm{d}u}{(\sqrt{2} + 1)^2 + u^2} = \frac{2}{\sqrt{2} - 1} \times \frac{1}{\sqrt{2} + 1} \frac{\pi}{2}$$

On conclut

$$\int_0^{\pi} \frac{\mathrm{d}t}{\sqrt{2} + \cos(t)} = \pi$$

Exercice 2 (**)

- 1. Soit $\alpha \in \mathbb{C}$. Déterminer une condition nécessaire et suffisante pour que $\int_0^{+\infty} e^{-\alpha t} dt$ converge et préciser sa valeur en cas de convergence.
- 2. En déduire la convergence et la valeur de $\int_0^{+\infty} \sin(t) e^{-xt} dt$ et $\int_0^{+\infty} \cos(t) e^{-xt} dt$ avec x > 0.

Corrigé : 1. Soit $\alpha \in \mathbb{C}$. Si $\alpha = 0$, le résultat est immédiat avec la divergence de l'intégrale. Supposons $\alpha \neq 0$. Pour $x \geqslant 0$, on a

$$\int_0^x e^{-\alpha t} dt = \frac{1}{\alpha} \left[1 - e^{-\alpha x} \right]$$

Notons $\alpha = a + \mathrm{i}b$ avec $(a,b) \in \mathbb{R}^2$. On a $|\mathrm{e}^{-\alpha t}| = \mathrm{e}^{-at}$ pour tout t réel. Si a < 0, alors $\mathrm{e}^{-at} \xrightarrow[t \to +\infty]{} +\infty$ et si a > 0, alors $\mathrm{e}^{-at} \xrightarrow[t \to +\infty]{} 0$. Supposons a = 0. Si $\mathrm{e}^{-\alpha t} = \mathrm{e}^{-\mathrm{i}bt} \xrightarrow[t \to +\infty]{} \ell$, alors on trouve

$$\forall u \in \mathbb{R}$$
 $e^{-ib(t+u)} = e^{-ibu}e^{-ibt} \xrightarrow[t \to +\infty]{} \ell = \ell e^{-ibu}$ avec $|\ell| = 1$

ce qui implique $e^{-ibu} = 1$ pour tout u réel. Il s'ensuit que b = 0 ce qui est exclu puisque $\alpha \neq 0$. On en déduit que si a = 0, la fonction $t \mapsto e^{-\alpha t}$ n'admet pas de limite. Ainsi, passant à la limite dans le cas a > 0, on conclut

$$\int_0^{+\infty} e^{-\alpha t} dt \text{ converge} \iff \operatorname{Re}(\alpha) > 0 \quad \text{et dans ce cas} \quad \int_0^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}$$

2. Soit x > 0. On Re(x - i) = x > 0 d'où la convergence de $\int_0^{+\infty} e^{-(x-i)t} dt$ ainsi que celle de $\int_0^{+\infty} \text{Re}\left(e^{-(x-i)t}\right) dt$ et $\int_0^{+\infty} \text{Im}\left(e^{-(x-i)t}\right) dt$ et

$$\int_{0}^{+\infty} e^{-(x-i)t} dt = \frac{1}{x-i} = \frac{x+i}{x^2+1}$$

Sachant

$$\int_0^{+\infty} e^{-(x-i)t} dt = \int_0^{+\infty} \cos(t) e^{-xt} dt + i \int_0^{+\infty} \sin(t) e^{-xt} dt$$

On conclut
$$\int_{0}^{+\infty} \cos(t) e^{-xt} dt = \frac{x}{x^{2} + 1} \text{ et } \int_{0}^{+\infty} \sin(t) e^{-xt} dt = \frac{1}{x^{2} + 1}$$

Exercice 3 (**)

Soient a, b réels avec a < b puis $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ avec $f(x) \xrightarrow[x \to -\infty]{} \ell \in \mathbb{R}$ et $\int_0^{+\infty} f$ convergente. Vérifier l'existence et calculer $\int_{-\infty}^{+\infty} [f(a+t) - f(b+t)] dt$.

Corrigé : Pour x,y réels avec $x\leqslant y$, on a par linéarité de l'intégrale (sur segment) puis changement de variables

$$\int_{x}^{y} [f(a+t) - f(b+t)] dt = \int_{x}^{y} f(a+t) dt - \int_{x}^{y} f(b+t) dt
= \int_{x+a}^{y+a} f(t) dt - \int_{x+b}^{y+b} f(t) dt
= \int_{x+a}^{x+b} f(t) dt + \int_{x+b}^{y+a} f(t) dt - \int_{x+b}^{y+a} f(t) dt - \int_{y+a}^{y+b} f(t) dt
\int_{x}^{y} [f(a+t) - f(b+t)] dt = \int_{x+a}^{x+b} f(t) dt + \int_{y+b}^{y+a} f(t) dt$$

Par convergence de $\int_0^{+\infty} f(t) dt$, on a

$$\int_{y+b}^{y+a} f(t) dt = -\int_0^{y+b} f(t) dt + \int_0^{y+a} f(t) dt \xrightarrow{y \to +\infty} 0$$

Puis, pour $\varepsilon > 0$, il existe A réel tel que pour $t \leqslant A$, on a $|f(t) - \ell| \leqslant \varepsilon$. Pour $x + b \leqslant A$, on a

$$\left| \int_{x+a}^{x+b} f(t) \, \mathrm{d}t - \ell(b-a) \right| = \left| \int_{x+a}^{x+b} (f(t) - \ell) \, \mathrm{d}t \right| \leqslant \int_{x+a}^{x+b} |f(t) - \ell| \, \mathrm{d}t \leqslant (b-a)\varepsilon$$

ce qui prouve

$$\int_{x+a}^{x+b} f(t) dt \xrightarrow[x \to -\infty]{} \ell(b-a)$$

Ainsi

L'intégrale
$$\int_{-\infty}^{+\infty} \left[f(a+t) - f(b+t) \right] dt$$
 converge et vaut $\ell(b-a)$.

Exercice 4 (Intégrales de Bertrand ***)

Étudier, en fonction des réels α et β , la nature de l'intégrale $\int_{\rm e}^{+\infty} \frac{{\rm d}t}{t^{\alpha} \ln(t)^{\beta}}$

Corrigé : L'intégrande f est continu par morceaux sur $[e; +\infty[$. Supposons $\alpha = 1$. Avec le changement de variables $u = \ln(t)$, les intégrales $\int_{e}^{+\infty} \frac{\mathrm{d}t}{t \ln(t)^{\beta}} \, \mathrm{et} \int_{1}^{+\infty} \frac{\mathrm{d}u}{u^{\beta}}$ sont de même nature et par critère de Riemann, il s'ensuit

Si
$$\alpha = 1$$
, l'intégrale $\int_{e}^{+\infty} \frac{dt}{t \ln(t)^{\beta}}$ converge si et seulement si $\beta > 1$.

Supposons $\alpha > 1$ et soit $\gamma \in \,]\,1\,;\alpha\,[$. On a

$$t^{\gamma} f(t) = \frac{1}{t^{\alpha - \gamma} \ln(t)^{\beta}} \xrightarrow[t \to +\infty]{} 0$$

clairement si $\beta \geqslant 0$ et par croissances comparées si $\beta < 0$. Ainsi, on a

$$\frac{1}{t^{\alpha} \ln(t)^{\beta}} \underset{t \to +\infty}{=} o\left(\frac{1}{t^{\gamma}}\right)$$

Par comparaison et critère de Riemann, il s'ensuit que f est intégrable sur [e ; $+\infty$ [. Supposons $\alpha < 1$. On a

$$tf(t) = \frac{t^{1-\alpha}}{\ln(t)^{\beta}} \xrightarrow[t \to +\infty]{} +\infty$$

clairement si $\beta \leq 0$ et par croissances comparées si $\beta > 0$. Autrement dit, on a

$$\frac{1}{t} \underset{t \to +\infty}{=} o(f(t))$$

Comme $\int_1^{+\infty} \frac{\mathrm{d}t}{t}$ diverge, alors par comparaison de fonctions positives, l'intégrale $\int_{\mathrm{e}}^{+\infty} f(t) \, \mathrm{d}t$ diverge. On conclut

L'intégrale
$$\int_{\rm e}^{+\infty} \frac{{
m d}t}{t^{\alpha} \ln(t)^{\beta}}$$
 converge si $\alpha>1$ et diverge si $\alpha<1$.

Exercice 5 (***)

Déterminer la nature des intégrales suivantes :

1.
$$\int_0^{+\infty} \ln(\operatorname{th}(t)) \, \mathrm{d}t$$

$$2. \int_{1}^{+\infty} \frac{e^{it}}{t} dt$$

3.
$$\int_0^{+\infty} \frac{1 - \cos(t)}{t} dt$$

$$4. \int_0^{+\infty} \sin(t^2) \, \mathrm{d}t$$

Corrigé: 1. On pose

$$\forall t \in]0; +\infty[\qquad f(t) = \ln(\operatorname{th}(t))$$

On a $f \in \mathscr{C}_{pm}(]0; +\infty[,\mathbb{R})$ puis, comme th(t) = t + o(t), on a

$$\sqrt{t}\ln(\operatorname{th}(t)) = \sqrt{t}\ln t + \sqrt{t}\ln(1+\operatorname{o}(1)) \xrightarrow[t\to 0]{} 0$$

autrement dit $f(t) = o\left(\frac{1}{\sqrt{t}}\right)$ et par comparaison et critère de Riemann, l'intégrale $\int_0^1 f(t) dt$ converge absolument. Ensuite, on a

$$\ln(\operatorname{th}(t)) \underset{t \to +\infty}{\sim} \operatorname{th}(t) - 1 \quad \text{et} \quad \operatorname{th}(t) - 1 = -\frac{2e^{-2t}}{1 + e^{-2t}} \underset{t \to +\infty}{\sim} -2e^{-2t}$$

On en déduit que $\ln(\operatorname{th}(t)) = o\left(\frac{1}{t^2}\right)$ et par comparaison et critère de Riemann, la fonction f est donc intégrable sur $[1; +\infty[$. On conclut

L'intégrale
$$\int_0^{+\infty} \ln(\operatorname{th}(t)) dt$$
 converge.

2. Les fonctions $t \mapsto -ie^{it}$ et $t \mapsto \frac{1}{t}$ sont de classe \mathscr{C}^1 sur $[1; +\infty[$. On a

$$\frac{e^{it}}{t} \xrightarrow[t \to 1]{} e^{i}$$
 et $\frac{e^{it}}{t} \xrightarrow[t \to +\infty]{} 0$

D'après le théorème d'intégration par parties, les intégrales

$$\int_{1}^{+\infty} \frac{\mathrm{e}^{\mathrm{i}t}}{t} \, \mathrm{d}t \quad \text{et} \quad \int_{1}^{+\infty} \frac{\mathrm{i}\mathrm{e}^{\mathrm{i}t}}{t^{2}} \, \mathrm{d}t$$

sont de même nature. Or, on a $\left|\frac{\mathrm{i}\mathrm{e}^{\mathrm{i}t}}{t^2}\right| = \frac{1}{t^2}$ d'où la convergence absolue de la deuxième intégrale d'après le critère de Riemann et on conclut

L'intégrale
$$\int_{1}^{+\infty} \frac{e^{it}}{t} dt$$
 converge.

Remarque : On en déduit en particulier la convergence des intégrales $\int_{1}^{+\infty} \frac{\cos(t)}{t} dt$ et $\int_{1}^{+\infty} \frac{\sin(t)}{t} dt$ qui sont respectivement partie réelle et imaginaire de $\int_{-t}^{+\infty} e^{it} dt$.

3. On a $t \mapsto \frac{1 - \cos(t)}{t} \in \mathscr{C}_{pm}(]0; +\infty[,\mathbb{R})$. Supposons $\int_{1}^{+\infty} \frac{1 - \cos(t)}{t} dt$ convergente. D'après le résultat de la question précédente, l'intégrale $\int_{1}^{+\infty} \frac{\cos(t)}{t} dt$ converge. Par linéarité de l'intégrale en cas de convergence, on a

$$\int_{1}^{+\infty} \frac{1 - \cos(t)}{t} dt + \int_{1}^{+\infty} \frac{\cos(t)}{t} dt = \int_{1}^{+\infty} \frac{dt}{t} \text{ convergente}$$

ce qui est absurde. On conclut

L'intégrale
$$\int_0^{+\infty} \frac{1 - \cos(t)}{t} dt$$
 diverge.

4. L'idée consiste à écrire
$$\int_0^{+\infty} \sin(t^2) dt = \int_0^{+\infty} \frac{2t \sin(t^2)}{2t} dt$$

Les fonctions $t \mapsto 1 - \cos(t^2)$ et $t \mapsto \frac{1}{2t}$ sont de classe \mathscr{C}^1 sur $]0; +\infty[$. On a

$$\frac{1 - \cos(t^2)}{2t} \underset{t \to 0}{\sim} \frac{t^3}{4} \xrightarrow[t \to 0]{} 0 \quad \text{et} \quad \frac{1 - \cos(t^2)}{2t} \xrightarrow[t \to +\infty]{} 0$$

D'après le théorème d'intégration par parties, les intégrales $\int_0^{+\infty} \sin(t^2) dt$ et $-\int_0^{+\infty} \frac{1 - \cos(t^2)}{2t^2} dt$ sont de même nature. Or, on a

$$\frac{1 - \cos(t^2)}{t^2} \xrightarrow[t \to 0]{} \text{et} \quad \frac{1 - \cos(t^2)}{t^2} \underset{t \to +\infty}{=} \mathcal{O}\left(\frac{1}{t^2}\right)$$

On conclut

L'intégrale
$$\int_0^{+\infty} \sin(t^2) dt$$
 converge.

Remarque : Cette intégrale s'appelle intégrale de Fresnel.

Exercice 6 (***)

Vérifier l'existence puis calculer

$$\forall n \geqslant 2$$

$$\int_0^{+\infty} \frac{\mathrm{d}t}{(t+1)(t+2)\dots(t+n)}$$

Corrigé : Soit $n \ge 2$. On pose

$$\forall t \geqslant 0 \qquad f_n(t) = \frac{1}{(t+1)(t+2)\dots(t+n)}$$

On a $f_n \in \mathscr{C}_{pm}([\,0\,;+\infty\,[\,,\mathbb{R})$ et $f_n(t) \underset{t\to+\infty}{=} \mathrm{O}\left(\frac{1}{t^2}\right)$ d'où son intégrabilité sur $[\,0\,;+\infty\,[\,.$ Notons $\mathrm{P} = \prod_{k=1}^n (\mathrm{X}+k)$ et $\mathrm{P} = (\mathrm{X}+k)\mathrm{P}_k$ pour $k\in [\![\,1\,;\,n\,]\!]$. Par décomposition en éléments simples, il existe des réels α_k tels que

$$\frac{1}{P} = \sum_{k=1}^{n} \frac{\alpha_k}{X+k}$$

Pour $k \in [1; n]$ fixé, multipliant l'égalité précédente par X + k puis substituant X = -k, on trouve

$$\forall k \in [1; n] \qquad \alpha_k = \frac{1}{P_k(-k)}$$

avec

$$P_k(-k) = \prod_{i=1}^{k-1} (-k-i) \prod_{i=k+1}^n (i-k) = (-1)^{k-1} (k-1)! (n-k)!$$

d'où

$$\frac{1}{P} = \frac{1}{(n-1)!} \sum_{k=1}^{n} (-1)^{k-1} {n-1 \choose k-1} \frac{1}{X+k}$$

Ainsi, pour x > 0, il vient par linéarité de l'intégrale

$$\int_0^x f_n(t) dt = \frac{1}{(n-1)!} \sum_{k=1}^n (-1)^{k-1} {n-1 \choose k-1} \left[\ln(x+k) - \ln(k) \right]$$
$$= \frac{1}{(n-1)!} \sum_{k=1}^n (-1)^{k-1} {n-1 \choose k-1} \left[\ln(x) + \ln\left(1 + \frac{k}{x}\right) - \ln(k) \right]$$

Or, un changement d'indice montre que $\sum_{k=1}^{n} (-1)^{k-1} {n-1 \choose k-1} = (1-1)^{n-1}$ et faisant tendre $x \to +\infty$, on conclut

$$\forall n \ge 2 \qquad \int_0^{+\infty} \frac{\mathrm{d}t}{(t+1)(t+2)\dots(t+n)} = \frac{1}{(n-1)!} \sum_{k=1}^n (-1)^k \binom{n-1}{k-1} \ln(k)$$

Exercice 7 (***)

- 1. Justifier l'existence de $I = \int_0^1 \frac{t-1}{\ln(t)} dt$
- 2. Montrer que $\int_{\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt \xrightarrow{\varepsilon \to 0} I$ puis en déduire la valeur de I.

Corrigé: 1. On pose $f(t) = \frac{t-1}{\ln(t)}$ pour $t \in]0;1[$. On a $f \in \mathscr{C}_{pm}(]0;1[$, $\mathbb{R})$ puis

$$f(t) \xrightarrow[t\to 0]{} 0$$
 et $\frac{t-1}{\ln(t)} \sim \frac{t-1}{t-1} \xrightarrow[t\to 1]{} 1$

Ainsi, la fonction f est prolongeable par continuité en 0 et 1 et par conséquent

L'intégrale
$$\int_0^1 \frac{t-1}{\ln(t)} dt$$
 converge.

2. Avec le changement de variables $u = -\ln(t)$, les intégrales étant de même nature donc convergentes et par conséquent égales, on obtient

$$\int_0^1 \frac{t-1}{\ln(t)} dt = \int_0^{+\infty} \frac{e^{-u} - e^{-2u}}{u} du$$

Soit x > 0. En remarquant $\frac{e^{-u}}{u} = o\left(\frac{1}{u^2}\right)$ et $\frac{e^{-2u}}{u} = o\left(\frac{1}{u^2}\right)$, on a par linéarité de l'intégrale car convergence

$$\int_{r}^{+\infty} \frac{\mathrm{e}^{-u} - \mathrm{e}^{-2u}}{u} \, \mathrm{d}u = \int_{r}^{+\infty} \frac{\mathrm{e}^{-u}}{u} \, \mathrm{d}u - \int_{r}^{+\infty} \frac{\mathrm{e}^{-2u}}{u} \, \mathrm{d}u$$

Avec le changement de variables v=2u dans la deuxième intégrale puis la relation de Chasles, on obtient

$$\int_{x}^{+\infty} \frac{e^{-u} - e^{-2u}}{u} du = \int_{x}^{+\infty} \frac{e^{-u}}{u} du - \int_{2x}^{+\infty} \frac{e^{-v}}{v} dv = \int_{x}^{2x} \frac{e^{-u}}{u} du$$

Par décroissance de $u\mapsto \mathrm{e}^{\,-u},$ on obtient

$$e^{-2x} \int_{x}^{2x} \frac{du}{u} \leqslant \int_{x}^{2x} \frac{e^{-u}}{u} du \leqslant e^{-x} \int_{x}^{2x} \frac{du}{u}$$

Par encadrement, on conclut

$$\int_0^1 \frac{t-1}{\ln(t)} \, \mathrm{d}t = \ln(2)$$

Exercice 8 (***)

Soit $f \in \mathscr{C}^2([0; +\infty[, \mathbb{R}). \text{ On suppose } f \text{ et } f'' \text{ intégrables.}$

1. Montrer

$$f'(x) \xrightarrow[x \to +\infty]{} 0$$

2. Montrer que le produit ff' est intégrable sur $[0; +\infty[$.

Corrigé : 1. On a

$$\forall x \geqslant 0 \qquad f'(x) = f'(0) + \int_0^x f''(t) \, \mathrm{d}t$$

d'où l'existence d'une limite finie ℓ pour f'(x) lorsque $x \to +\infty$. Supposons $\ell > 0$. Il existe $a \geqslant 0$ tel que pour $f'(t) \geqslant \frac{\ell}{2}$ pour $t \geqslant a$ puis

$$\forall x \geqslant a$$
 $f(x) = f(a) + \int_a^x f'(t) dt \geqslant f(a) + \frac{\ell}{2}(x - a)$

ce qui contredit l'intégrabilité de f. Si $\ell < 0$, on applique ce qui précède à -f. On conclut

$$f'(x) \xrightarrow[x \to +\infty]{} 0$$

2. Comme f' est continue et convergente en $+\infty$, on en déduit que $f'(t)=\mathrm{O}(1)$ et par suite $ff'=\mathrm{O}(f)$ d'où

La fonction ff' est intégrable sur \mathbb{R} .

7

Exercice 9 (**)

Déterminer un équivalent simple pour $x \to +\infty$ de $\int_x^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$.

$$\frac{-e^{-t}}{\sqrt{t}} \xrightarrow[t \to x]{} -\frac{e^{-x}}{\sqrt{x}} \quad \text{et} \quad \frac{-e^{-t}}{\sqrt{t}} \xrightarrow[t \to x]{} 0$$

Ainsi, d'après le théorème d'intégration par parties, les intégrales

$$\int_{x}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \quad \text{et} \quad \int_{x}^{+\infty} \frac{e^{-t}}{2t^{\frac{3}{2}}} dt$$

sont de même nature donc convergentes et on a

$$\int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{\sqrt{t}} \, \mathrm{d}t = \left[-\frac{\mathrm{e}^{-t}}{\sqrt{t}} \right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{\mathrm{e}^{-t}}{2t^{\frac{3}{2}}} \, \mathrm{d}t$$

Or, on remarque

$$\frac{e^{-t}}{t^{\frac{3}{2}}} = o\left(\frac{e^{-t}}{\sqrt{t}}\right)$$

D'où, par intégration des relations de comparaison

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^{\frac{3}{2}}} dt = o\left(\int_{x}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt\right)$$

Ainsi

$$\int_{x}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt \underset{x \to +\infty}{\sim} \frac{e^{-t}}{\sqrt{t}}$$

Exercice 10 (**)

On pose

$$\forall x > 0$$
 $F(x) = \int_{-\pi}^{+\infty} \frac{e^{-t}}{t} dt$

- 1. Justifier que F est définie, de classe \mathscr{C}^1 sur] 0; $+\infty$ [et préciser ses variations.
- 2. Déterminer $\lim_{x\to 0^+} F(x)$ puis un équivalent de F(x) pour $x\to 0^+$.

Corrigé: 1. On pose

$$\forall t > 0 \qquad f(t) = \frac{e^{-t}}{t}$$

On a $f \in \mathscr{C}^0(]0; +\infty[,\mathbb{R})$ et $f(t) \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$ par croissances comparées d'où l'intégrabilité de f par comparaison et critère de Riemann. Par conséquent

La fonction F est bien définie, de classe
$$\mathscr{C}^1$$
 sur $]0; +\infty[$ avec $F'(x) = -\frac{e^{-x}}{x}$ pour $x > 0$.

2. La fonction F est décroissante sur] 0; $+\infty$ [. D'après le théorème de limite monotone, la fonction F est minorée sur] 0; 1] si et seulement si elle admet une limite finie en 0^+ . Or, on a $f(t) \underset{t \to 0^+}{\sim} \frac{1}{t}$ donc, d'après le critère des équivalents pour des fonctions positives, les intégrales $\int_0^1 f(t) \, dt$ et

 $\int_0^1 \frac{\mathrm{d}t}{t} \text{ sont de même nature donc divergentes et par conséquent, l'intégrale } \int_0^{+\infty} f(t) \, \mathrm{d}t \, \mathrm{diverge},$ autrement dit F n'admet pas de limite finie en 0^+ d'où

$$F(x) \xrightarrow[x \to 0^+]{} +\infty$$

Soit x > 0. On a par relation de Chasles

$$F(x) = \int_{r}^{1} \frac{e^{-t}}{t} dt + F(1)$$

Comme $\frac{e^{-t}}{t} \sim \frac{1}{t} geq0$ et comme $\int_0^1 \frac{dt}{t}$ diverge, on a par intégration des relations de comparaison

$$\int_{x}^{1} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t \sim \int_{x \to 0^{+}}^{1} \frac{\mathrm{d}t}{t} = -\ln(x)$$

Et remarquant $F(1) = o(\ln(x))$, on conclut

$$F(x) \underset{x \to 0^+}{\sim} -\ln(x)$$

Exercice 11 (***)

Soit $f \in \mathscr{C}_{pm}(]0;1],\mathbb{R})$ décroissante positive. On pose

$$\forall n \in \mathbb{N}^*$$
 $S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$

Montrer que f est intégrable sur]0;1] si et seulement si $(S_n)_n$ converge et dans ce cas

$$S_n \xrightarrow[n \to \infty]{} \int_0^1 f(t) dt$$

 $\mathbf{Corrig\'e}:$ Supposons f intégrable sur] $0\,;1\,].$ Soit n entier non nul. Par décroissance de f, on a

$$\forall k \in [1; n-1] \qquad \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) \, \mathrm{d}t \leqslant \frac{1}{n} f\left(\frac{k}{n}\right) \leqslant \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(t) \, \mathrm{d}t$$

Par sommation, on trouve

$$\int_{\frac{1}{n}}^{1} f(t) dt \leqslant S_n - \frac{f(1)}{n} \leqslant \int_{0}^{1 - \frac{1}{n}} f(t) dt$$

Faisant tendre $n \to +\infty$, il vient par encadrement

$$S_n \xrightarrow[n \to \infty]{} \int_0^1 f(t) dt$$

Supposons f non intégrable. Comme f est positive, on en déduit que $\int_x^1 f(t) dt \xrightarrow[x \to 0]{} +\infty$ par théorème de limite monotone appliqué à la fonction décroissante $x \mapsto \int_x^1 f(t) dt$. D'après la minoration précédemment établie (qui ne requiert pas l'intégrabilité sur]0;1]), on a

$$\forall n \geqslant 1$$
 $S_n \geqslant \frac{f(1)}{n} + \int_{\underline{1}}^{1} f(t) dt$

Par comparaison, il s'ensuit que $S_n \xrightarrow[n \to \infty]{} +\infty$. On conclut

La fonction f est intégrable sur]0;1] si et seulement si $(S_n)_n$ converge et dans ce cas $S_n \xrightarrow[n\to\infty]{} \int_0^1 f(t) dt$.

Exercice 12 (***)

Soit $\alpha > 0$. Étudier la nature de $\int_1^{+\infty} \ln\left(1 + \frac{\sin(t)}{t^{\alpha}}\right) dt$.

Corrigé : On pose

$$\forall t > 0$$
 $f_{\alpha}(t) = \ln\left(1 + \frac{\sin(t)}{t^{\alpha}}\right)$

Pour t>1, on a $t^{\alpha}>1$ d'où

$$\frac{|\sin(t)|}{t^{\alpha}} \leqslant \frac{1}{t^{\alpha}} < 1$$

ce qui prouve que le terme dans le logarithme reste strictement positif d'où $f \in \mathscr{C}_{pm}([1; +\infty[, \mathbb{R}).$

Pour $\alpha > 0$, on a

$$\frac{\sin(t)}{t^{\alpha}} \xrightarrow[t \to +\infty]{} 0$$

Ainsi
$$f_{\alpha}(t) = g_{\alpha}(t) + h_{\alpha}(t)$$
 avec $g_{\alpha}(t) = \frac{\sin(t)}{t^{\alpha}}$ et $h_{\alpha}(t) = \frac{1}{2} \frac{\sin(t)^{2}}{t^{2\alpha}} + o\left(\frac{1}{t^{2\alpha}}\right)$

Les fonctions $t \mapsto -\cos(t)$ et $t \mapsto \frac{1}{t^{\alpha}}$ sont de classe \mathscr{C}^1 sur $[1; +\infty[$ et on a

$$-\frac{\cos(t)}{t^{\alpha}} \xrightarrow[t \to 1]{} -\cos 1 \quad \text{et} \quad -\frac{\cos(t)}{t^{\alpha}} \xrightarrow[t \to +\infty]{} 0$$

D'après le théorème d'intégration par parties, les intégrales

$$\int_{1}^{+\infty} g_{\alpha}(t) dt \quad \text{et} \quad \int_{1}^{+\infty} \frac{\cos(t)}{t^{\alpha+1}} dt$$

sont de même nature. Or, on observe $\left|\frac{\cos(t)}{t^{\alpha+1}}\right| \underset{t\to+\infty}{=} O\left(\frac{1}{t^{\alpha+1}}\right)$ d'où la convergence absolue de

la deuxième intégrale d'après le critère de Riemann et par conséquent, l'intégrale $\int_1^{+\infty} g_{\alpha}(t) dt$ converge.

On a

$$h_{\alpha}(t) \underset{t \to +\infty}{\sim} -\frac{1}{2} \frac{\sin(t)^2}{t^{2\alpha}} \leqslant 0$$

D'après le critère des équivalents (licite, signe constant au voisinage de $+\infty$), les intégrales $\int_{1}^{+\infty}h_{\alpha}(t)$ et $\int_{1}^{+\infty}\frac{\sin(t)^{2}}{t^{2\alpha}}\,\mathrm{d}t$ sont de même nature. Si $2\alpha>1$, on a $\frac{\sin(t)^{2}}{t^{2\alpha}}\stackrel{=}{\underset{t\to+\infty}{=}}\mathrm{O}\left(\frac{1}{t^{2\alpha}}\right)$ intégrable sur $[1;+\infty[$ par comparaison et critère de Riemann. Supposons enfin $2\alpha\leqslant 1$. On observe

$$\forall t \geqslant 1$$
 $\frac{\sin(t)^2}{t^{2\alpha}} = \frac{1 - \cos(2t)}{t^{2\alpha}}$

Comme vue ci-avant, une intégration par parties permet d'établir la convergence de l'intégrale $\int_{1}^{+\infty} \frac{\cos(2t)}{t^{2\alpha}} \, \mathrm{d}t.$ Si on suppose l'intégrale $\int_{1}^{+\infty} \frac{\sin(t)^2}{t^{2\alpha}} \, \mathrm{d}t \text{ convergence, il vient par linéarité car convergence}$

$$\int_{1}^{+\infty} \left(\frac{1 - \cos(2t)}{t^{2\alpha}} + \frac{\cos(2t)}{t^{2\alpha}} \right) dt = \int_{1}^{+\infty} \frac{dt}{t^{2\alpha}}$$
 converge

ce qui est faux pour $2\alpha \leq 1$. On en déduit

$$\int_{1}^{+\infty} h_{\alpha}(t) dt \text{ converge } \iff 2\alpha > 1$$

Enfin, l'intégrale $\int_{1}^{+\infty} (g_{\alpha} + h_{\alpha})(t) dt$ est de même nature que $\int_{1}^{+\infty} h_{\alpha}(t) dt$ puisque $(g_{\alpha} + h_{\alpha}) - g_{\alpha} = h_{\alpha}$ avec linéarité de l'intégrale sous réserve de convergence. Ainsi

$$\boxed{\text{L'intégrale } \int_{1}^{+\infty} \ln \left(1 + \frac{\sin(t)}{t^{\alpha}}\right) \, \mathrm{d}t \text{ converge si et seulement si } \alpha > \frac{1}{2}.}$$