Devoir en temps libre n°03

Problème I

Soit $(u_n)_n$ une suite de réels non nuls. On note

$$\forall n \in \mathbb{N} \qquad P_n = \prod_{k=0}^n u_k$$

On dit que le produit infini $\prod u_n$ converge si la suite $(P_n)_n$ admet une limite finie non nulle.

- 1. Montrer que si $\prod u_n$ converge, alors $u_n \xrightarrow[n \to \infty]{} 1$.
- 2. On suppose que $(u_n)_n$ est une suite de réels positifs. Montrer

$$\prod (1+u_n)$$
 converge $\iff \sum u_n$ converge

3. On suppose que $(u_n)_n$ est une suite à valeurs dans [0;1[. Montrer

$$\prod (1-u_n)$$
 converge $\iff \sum u_n$ converge

Problème II

On pose

$$\forall n \in \mathbb{N}$$
 $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k^2}$

- 1. Justifier que R_n est bien défini pour n entier.
- 2. Montrer la convergence de la série $\sum R_n$.
- 3. Calculer $\sum_{n=0}^{+\infty} \mathbf{R}_n$. Pour N entier, On pourra considérer

$$\sum_{n=0}^{N-1} \left(\sum_{k=n+1}^{N} \frac{(-1)^k}{k^2} + R_N \right)$$

Problème III

On définit la suite $(u_n)_n$ par $u_0 > 0$ et $u_{n+1} = \frac{1}{2} \operatorname{th}(u_n)$ pour n entier.

1. Montrer

$$\forall n \in \mathbb{N} \qquad 0 < u_n \leqslant \frac{u_0}{2^n}$$

- 2. En considérant la suite $(v_n)_n$ définie par $v_n = 2^n u_n$ pour n entier, déterminer, à constante près, un équivalent simple de u_n lorsque $n \to +\infty$.
- 3. Déterminer un développement asymptotique à 2 termes de u_n lorsque $n \to +\infty$.

Problème IV

Étudier la nature de la série $\sum_{n\geqslant 1} \frac{(-1)^{\left\lfloor \sqrt{n}\right\rfloor}}{n^{1/4}}$.