Préparation à l'interrogation n°04

Étude asymptotique 1

1. Développement limité à l'ordre 2 en zéro de

$$\frac{1}{x} - \frac{1}{\operatorname{th}(x)} = \frac{\operatorname{sh}(x) - x \operatorname{ch}(x)}{x \operatorname{sh}(x)} = \frac{1}{x^2 + \operatorname{o}(x^3)} \left(x + \frac{x^3}{3!} - x \left(1 + \frac{x^2}{2!} \right) + \operatorname{o}(x^4) \right)$$
$$= \frac{1}{1 + \operatorname{o}(x)} \left(-\frac{x}{3} + \operatorname{o}(x^2) \right) = (1 + \operatorname{o}(x)) \left(-\frac{x}{3} + \operatorname{o}(x^2) \right) = -\frac{x}{3} + \operatorname{o}(x^2)$$

2. Développement limité à l'ordre 2 en zéro de

$$1 - \cos(t)^n = 1 - \left(1 - \frac{t^2}{2} + o(t^2)\right)^n = 1 - \left(1 - \frac{nt^2}{2} + o(t^2)\right) = \frac{nt^2}{2} + o(t^2)$$

$\mathbf{2}$ **Formules**

Résolution des suites récurrentes linéaires d'ordre 2.

3 Trigonométrie

1.
$$\sin(a)\cos(b) = \frac{\sin(a+b) + \sin(a-b)}{2}$$
 2. $\cos(t)^2 = \frac{1 + \cos(2t)}{2}$

2.
$$\cos(t)^2 = \frac{1 + \cos(2t)}{2}$$

Calcul matriciel 4

- 1. Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$. On définit $AB \in \mathcal{M}_{n,q}(\mathbb{K})$ par $AB = (c_{i,j})$ où $c_{i,j} = \sum_{k=1}^{F} a_{i,k} b_{k,j}$ pour tout $(i,j) \in [[1; n]] \times [[1; q]];$
- 2. Soit $(E_{i,j})_{(i,j)\in [\![1];n]\!]^2}\in \mathscr{M}_n(\mathbb{K})$ la base canonique de $\mathscr{M}_n(\mathbb{K})$. On a la relation

$$\forall (i, j, k, \ell) \in [1; n]^4$$
 $\mathbf{E}_{i,j} \times \mathbf{E}_{k,\ell} = \delta_{j,k} \mathbf{E}_{i,\ell}$

- 3. Soient $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. On a Tr(AB) = Tr(BA);
- 4. Pour $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$, on a det $A = \sum_{\sigma \in S} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$;
- 5. Soit $A \in \mathscr{M}_n(\mathbb{K})$. On a

$$ACom(A)^{\top} = Com(A)^{\top}A = det(A)I_n$$

6. Soit $(x_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ et $A = (x_i^{j-1})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{K})$. Le déterminant $\det(A)$ dit de Vandermonde vaut

$$\det(\mathbf{A}) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

7. Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec $\operatorname{rg}(A) = r$. Il existe P, Q dans $\operatorname{GL}_n(\mathbb{K})$ telles que $A = \operatorname{PJ}_rQ$ avec $J_r = diag(I_r, 0).$

5 Dérivation

Dérivée première et seconde des fonctions :

1.
$$\forall t > 0$$
 $f(t) = \frac{1}{t^{\alpha}}$ avec $\alpha > 0$;

2.
$$\forall t \in \mathbb{R}$$
 $g(t) = Arctan(t)$.

6 Polynômes

Soit $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et m entier non nul. On a

a racine d'ordre
$$m \iff P(a) = P'(a) = \ldots = P^{(m-1)}(a) = 0$$
 et $P^{(m)}(a) \neq 0$

a racine d'ordre au moins
$$m \iff P(a) = P'(a) = \ldots = P^{(m-1)}(a) = 0$$

7 Exercice type

Soit $E = \mathbb{R}_n[X]$ avec n entier. Pour $P \in E$, on pose $\varphi(P) = (X - 1)P' - nP$. Montrer que $\varphi \in \mathcal{L}(E)$, préciser sa matrice dans la base canonique puis déterminer une base de Ker φ et Im φ .

Corrigé: L'application φ est linéaire par linéarité du produit à gauche et de la dérivation puis $\varphi(X^k) = (k-n)X^k - kX^{k-1}$ pour $k \in [0; n]$. Notant \mathscr{C} la base canonique de E, on a

$$\operatorname{mat}_{\mathscr{C}}\varphi = \begin{pmatrix}
-n & -1 & 0 & \dots & 0 \\
0 & -(n-1) & -2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & -n \\
0 & \dots & \dots & 0 & 0
\end{pmatrix}$$

Pour déterminer Ker φ , on résout l'équation différentielle (t-1)x'-nx=0 sur l'intervalle $I=]1;+\infty[$. On trouve Vect $(t\mapsto (t-1)^n)$ comme espace de solutions d'où $(X-1)^n$ générateur de Ker φ . D'après le théorème du rang, il s'ensuit rg $\varphi=n$. D'après la forme de la matrice, on a Im $\varphi\subset\mathbb{R}_{n-1}[X]$ et l'inclusion est une égalité par égalité des dimensions. Ainsi, on conclut

$$\boxed{((\mathbf{X}-1)^n) \text{ base de Ker } \varphi,\, (\mathbf{X}^k)_{k\in \llbracket \, 0 \, ; \, n-1 \, \rrbracket} \text{ base de Im } \varphi}$$

8 Exercice type

Soit $M \in \mathcal{M}_n(\mathbb{K})$ avec rg(M) = 1. Montrer qu'il existe X et Y des matrices colonnes non nulles telles que $M = XY^{\top}$.

Corrigé : Il existe une colonne X de M non nulle. Toutes les autres colonnes de M sont colinéaires à celle-ci d'où $\mathbf{M} = (y_1 \mathbf{X} | \dots | y_n \mathbf{X}) = \mathbf{X} \mathbf{Y}^{\top}$ avec Y dans $\mathcal{M}_{n,1}(\mathbb{K})$ et $\mathbf{Y} \neq 0$ puisque l'un des y_j vaut 1.

2

9 Questions de cours

Structures, révisions et compléments d'algèbre linéaire, graphe