Feuille d'exercices n°20

Dans ce qui suit, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Exercice 1 (**)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ avec n entier impair. Montrer que la matrice A admet une valeur propre réelle.

Exercice 2 (***)

Soit E un C-ev de dimension finie, f et g dans $\mathscr{L}(E)$ tels que

$$f \circ g - g \circ f = f$$

Montrer que f est nilpotent et que f et g admettent au moins un vecteur propre commun.

Exercice 3 (***)

Soit E un K-ev de dimension finie, $u \in \mathcal{L}(E)$.

- 1. Soit $x \in E \setminus \{0_E\}$. Justifier qu'il existe un unique polynôme unitaire $\pi_{u,x} \in \mathbb{K}[X]$ vérifiant $\pi_{u,x}(u)(x) = 0_E$ et divisant tout polynôme $P \in \mathbb{K}[X]$ vérifiant $P(u)(x) = 0_E$.
- 2. On suppose $\pi_u = \mathbf{P}^r$ avec \mathbf{P} irréductible et r entier non nul. Montrer qu'il existe $x \in \mathbf{E} \setminus \{0_{\mathbf{E}}\}$ tel que $\pi_{u,x} = \pi_u$.

Exercice 4 (**)

Soit E = { $f \in \mathscr{C}^0([\,0\,; +\infty\,[\,,\mathbb{R}) \mid f(0) = 0$ }. On pose

$$\forall f \in E$$
 $T(f)(x) = \begin{cases} \frac{1}{x} \int_0^x f(t) dt & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$

- 1. Justifier que E est un \mathbb{R} -ev et $T \in \mathcal{L}(E)$.
- 2. Déterminer les éléments propres de T.

Exercice 5 (***)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec rg A = 2. Déterminer une expression de χ_A en fonction de $\operatorname{Tr}(A)$ et $\operatorname{Tr}(A^2)$.

Exercice 6 (***)

Soient A, B dans $\mathcal{M}_n(\mathbb{K})$.

- 1. On suppose qu'il existe $X \in \mathcal{M}_n(\mathbb{K})$ avec rg $X = r \ge 1$ tel que AX = XB. Montrer que χ_A et χ_B ont un facteur commun de degré r.
- 2. La réciproque est-elle vraie?
- 3. Déterminer une condition nécessaire et suffisante pour que, pour $M \in \mathcal{M}_n(\mathbb{C})$, l'équation AX XB = M d'inconnue $X \in \mathcal{M}_n(\mathbb{C})$ admette une unique solution.

Exercice 7 (***)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si A admet une valeur propre complexe non réelle, alors il existe un plan vectoriel stable par A.

Exercice 8 (**)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que χ_A divise π_A^n .

Exercice 9 (**)

Soit *n* entier. On définit φ sur $\mathbb{K}_n[X]$ par $\varphi(P) = P(X+1)$ pour $P \in \mathbb{K}_n[X]$. Déterminer π_{φ} .

Exercice 10 (**)

Soit u un endomorphisme de E un \mathbb{K} -ev admettant un polynôme minimal π_u et $P \in \mathbb{K}[X]$.

- 1. Montrer $P(u) \in GL(E) \iff P \wedge \pi_u = 1$
- 2. Montrer que si $P(u) \in GL(E)$, alors $P(u)^{-1} \in \mathbb{K}[u]$.

Exercice 11 (***)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec $n \geq 2$.

1. On suppose $\forall i \in \llbracket 1; n \rrbracket$ $|a_{i,i}| > R_i$ avec $R_i = \sum_{j \in \llbracket 1; n \rrbracket \setminus \{i\}} |a_{i,j}|$

Montrer que $A \in GL_n(\mathbb{K})$.

2. Pour $(a, R) \in \mathbb{C} \times \mathbb{R}_+$, on note $D_f(a, R) = \{z \in \mathbb{C} \mid |z - a| \leq R\}$. Montrer

$$\operatorname{Sp}(A) \subset \bigcup_{i=1}^{n} \operatorname{D}_{f}(a_{i,i}, \mathbf{R}_{i})$$

Les ensembles $D_f(a_{i,i}, R_i)$ sont appelés disques de Gerschgorin.