Feuille d'exercices n°13

Exercice 1 (*)

Soit $G = \mathbb{R}_+^* \times \mathbb{R}$ muni de la loi \star définie par $(x, y) \star (a, b) = (xa, xb + ya)$. Montrer (G, \star) est un groupe.

Corrigé: L'ensemble G n'est pas le sous-groupe d'un groupe connu. On vérifie sans difficultés les différentes propriétés d'un groupe. Le neutre est (1,0), on a

$$((x,y)\star(a,b))\star(u,v) = (xau,xav + uxb + uya) = (x,y)\star((a,b)\star(u,v))$$

et $(x,y) \star (1/x, -y/x^2) = (1/x, -y/x^2) \star (x,y) = (1,0)$

Ainsi

 (G,\star) est un groupe.

Exercice 2 (**)

Soit φ un morphisme non constant d'un groupe fini (G, \star) vers (\mathbb{C}^*, \times) . Calculer

$$\sum_{x \in G} \varphi(x)$$

On pourra considérer l'application $x \mapsto a \star x$ avec $a \in G$ bien choisi.

Corrigé: Soit $a \in G$ tel que $\varphi(a) \neq 1$. L'application $x \mapsto a \star x$ est une permutation de G dont la réciproque est donnée par $x \mapsto a^{-1} \star x$. Ainsi, on a

$$\sum_{x \in \mathcal{G}} \varphi(x) = \sum_{x \in \mathcal{G}} \varphi(a \star x) = \sum_{x \in \mathcal{G}} \varphi(a) \varphi(x) = \varphi(a) \sum_{x \in \mathcal{G}} \varphi(x)$$

Compte-tenu du choix de a, on conclut

$$\sum_{x \in G} \varphi(x) = 0$$

Exercice 3 (*)

Soit A un anneau. On définit le centre de A noté Z(A) par

$$Z(A) = \{ x \in A \mid \forall a \in A \qquad ax = xa \}$$

Montrer que Z(A) est un sous-anneau de $(A, +, \times)$.

Corrigé : On a $1_A \in Z(A)$, $0_A \in Z(A)$ $((0_A + 0_A)a = 0_Aa$ d'où $0_Aa = 0_A$ pour $a \in A)$ Soit $(x,y) \in Z(A)^2$. On a

$$\forall a \in A$$
 $a(x-y) = ax - ay = xa - ya = (x-y)a$

d'où $x - y \in Z(A)$ et

$$\forall a \in A$$
 $a(xy) = (ax)y = (xa)y = x(ay) = x(ya) = (xy)a$

Ainsi L'ensemble Z(A) est un sous-anneau de $(A, +, \times)$.

Exercice 4 (*)

$$\mathbb{Z}[i] = \{a + \mathrm{i}b, (a, b) \in \mathbb{Z}^2\}$$

Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif puis déterminer $U(\mathbb{Z}[i])$. On pourra considérer l'application $N : \mathbb{C} \to \mathbb{R}, z \mapsto z\bar{z}$.

Corrigé : On a $\mathbb{Z}[i]$ sous-groupe de $(\mathbb{C},+)$ et contenant 1. Puis, soit $(a,b),\,(c,d)$ dans \mathbb{Z}^2 . On a

$$(a+ib)(c+id) = ac - bd + i(ad+bc) \in \mathbb{Z}[i]$$

et loi \times est commutative. Ainsi

L'ensemble
$$\mathbb{Z}[i]$$
 est un anneau commutatif.

Notons $N(z)=z\bar{z}$ pour $z\in\mathbb{C}$. On a N(zz')=N(z)N(z') pour tout $(z,z')\in\mathbb{C}^2$ et

$$\forall (a,b) \in \mathbb{Z}^2$$
 $N(a+ib) = a^2 + b^2 \in \mathbb{N}$

Soit $a + ib \in U(\mathbb{Z}[i])$. Il existe $c + id \in \mathbb{Z}[i]$ tel que (a + ib)(c + id) = 1 et

$$N((a+ib)(c+id)) = N(a+ib)N(c+id) = N(1) = 1 \implies (a,b) \in \{(\pm 1,0), (0,\pm 1)\}$$

Autrement dit

$$U(\mathbb{Z}[i]) \subset \{\pm 1, \pm i\}$$

L'inclusion réciproque est immédiate et on conclut

$$U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$$

Remarque : L'anneau $\mathbb{Z}[i]$ est appelé anneau des entiers de Gauss.

Exercice 5 (**)

Soit $(A, +, \times)$ un anneau commutatif. Un élément $x \in A$ est dit nilpotent s'il existe n entier non nul tel que $x^n = 0_A$. On note

$$\mathcal{N}(\mathbf{A}) = \{ x \in \mathbf{A} \mid x \text{ nilpotent} \}$$

- 1. Montrer que $\mathcal{N}(A)$ est un idéal de A.
- 2. Soit $a \in \mathcal{N}(A)$. Montrer que $1_A a$ est inversible.
- 3. Soit $a \in \mathcal{N}(A)$ et b inversible. Montrer que a + b est inversible.

Corrigé: 1. On a $0 \in \mathcal{N}(A)$. Soit $(x, y) \in \mathcal{N}(A)^2$ et n, m entiers non nuls tels que $x^n = y^m = 0$. On a $(-x)^n = ((-1)x)^n = (-1)^n x^n = 0$ d'où $-x \in \mathcal{N}(A)$. Puis

$$(x+y)^{n+m} = \sum_{k=0}^{n+m} {n \choose k} x^k y^{n+m-k}$$

Pour $k \in [0; n+m]$, on a un des deux exposants k ou n+m-k suffisamment grand (on peut le voir comme une utilisation du principe des tiroirs : on doit placer n+m chaussettes dans les deux tiroirs que constituent les exposants sur x et y dans la somme). Soit on a $k \ge n$, soit on a k < n d'où n+m-k > m. Par suite, il vient $(x+y)^{n+m} = 0$ d'où $\mathcal{N}(A)$ sous-groupe de (A, +). Enfin, pour $(a, x) \in A \times \mathcal{N}(A)$, avec n entier tel que $x^n = 0$, on a $(ax)^n = a^n x^n = 0$ et ainsi

L'ensemble
$$\mathcal{N}(A)$$
 est un idéal de l'anneau A.

Remarque: L'idéal $\mathcal{N}(A)$ est appelé nilradical de l'anneau A.

2. Il existe n entier tel que $a^n = 0$. D'après l'identité de Bernoulli, on a

$$1 = 1 - a^n = (1 - a) \sum_{k=0}^{n-1} a^{n-1-k}$$

Ainsi

$$\forall a \in \mathcal{N}(a)$$
 $1 - a \in U(A)$

3. On a a+b=b(1-c) avec $c=-b^{-1}a$ nilpotent puisque $\mathcal{N}(A)$ est un idéal. Ainsi, on a $1-c\in \mathrm{U}(A)$ et comme $\mathrm{U}(A)$ est un groupe, on conclut

$$\forall (a,b) \in \mathcal{N}(A) \times U(A)$$
 $a+b=b(1+b^{-1}a) \in U(A)$

Exercice 6 (**)

Un idéal I d'un anneau commutatif $(A, +, \times)$ est dit premier si

$$\forall x, y \in A \quad xy \in I \implies x \in I \text{ ou } y \in I$$

Décrire les idéaux premiers de $(\mathbb{K}[X], +, \times)$.

Corrigé : Soit I idéal premier de $\mathbb{K}[X]$. On suppose $I \neq \{0\}$ sinon c'est immédiat par intégrité de $\mathbb{K}[X]$. Il existe P unitaire tel que $I = P \cdot \mathbb{K}[X]$. Si P = AB avec A et B non constants, alors $AB \in I$ et $A \notin I$, $B \notin I$. On a donc nécessairement P irréductible. Supposons P irréductible qui divise AB. On a $P \wedge A$ diviseur de P donc $P \wedge A = 1$ ou P (car constant ou associé à P). Si $P \wedge A = P$, comme $P \wedge A|A$, c'est fini. Sinon, si $P \wedge A = 1$ d'après le lemme de Gauss, on a P|B. Ainsi

Les idéaux premiers de $\mathbb{K}[X]$ sont exactement les $P \cdot \mathbb{K}[X]$ avec P irréductible.

Exercice 7 (**)

Soit n entier. Déterminer le reste de la division euclidienne X^n par (X-a)(X-b) avec a,b dans \mathbb{K} .

Corrigé : D'après le théorème de la division euclidienne, il existe un unique couple $(Q, R) \in \mathbb{K}[X]$ tel que

$$X^{n} = (X - a)(X - b)Q + R \tag{*}$$

avec deg R < 2, autrement dit R = $\alpha X + \beta$ avec α, β scalaires.

Supposons $a \neq b$. En substituant X par a puis par b dans (*), on obtient

$$\begin{cases} a^n = \alpha a + \beta \\ b^n = \alpha b + \beta \end{cases} \iff \begin{cases} \alpha = \frac{a^n - b^n}{a - b} \\ \beta = \frac{ab^n - ba^n}{a - b} \end{cases}$$

Ainsi

Si
$$a \neq b$$
, on a $R = \frac{1}{a-b} \left((a^n - b^n)X + ab^n - ba^n \right)$

Supposons a = b. Notant $S = (X - a)^2 Q$, on observe que S admet a pour racine double d'où S(a) = S'(a) = 0. En substituant X par a dans (*) puis dans la relation obtenue par dérivation de (*), on obtient

$$\begin{cases} a^n = \alpha a + \beta \\ na^{n-1} = \alpha \end{cases} \iff \begin{cases} \alpha = na^{n-1} \\ \beta = (1-n)a^n \end{cases}$$

Ainsi

Si
$$a = b$$
, on a $R = na^{n-1}X + (1 - n)a^n$

Variantes: 1. Avec la formule de Taylor, on a

$$P = \sum_{n=0}^{+\infty} \frac{P^{(k)}(a)}{k!} (X - a)^k = R + (X - a)^2 Q \text{ et } R = P(a) + P'(a)(X - a)$$

2. On peut aussi considérer la base des polynômes de Lagrange $L_a = \frac{X-b}{X-a}$ et $L_b = \frac{X-a}{b-a}$. On a instantanément

$$R = a^n L_a + b^n L_b$$

Exercice 8 (*)

Soit $P \in \mathbb{C}[X]$ avec deg $P \geqslant 1$. Déterminer r le nombre de racines de P en fonction de P et $P \wedge P'$.

Corrigé: Notons $P = \lambda \prod_{i=1}^{r} (X - \alpha_i)^{m_i}$ avec λ , α_i des complexes, λ non nul et m_i des entiers non nuls. Comme α_i racine de P' de multiplicité $m_i - 1$, on a

$$P \wedge P' = \prod_{i=1}^{r} (X - \alpha_i)^{m_i - 1}$$

puis

$$\deg(P \wedge P') = \sum_{i=1}^{r} (m_i - 1) = \deg P - r$$

Ainsi

$$r = \deg P - \deg(P \wedge P')$$

Exercice 9 (**)

Soit $(P_n)_n$ suite de polynômes de $\mathbb{R}[X]$ définie par

$$P_0 = 2$$
, $P_1 = X$ $\forall n \in \mathbb{N}$ $P_{n+2} = XP_{n+1} - P_n$

- 1. Calculer P₂, P₃.
- 2. Déterminer le degré et le coefficient dominant de P_n .
- 3. Montrer que pour tout $(n, z) \in \mathbb{N} \times \mathbb{C}^*$ $P_n(z + 1/z) = z^n + 1/z^n$.
- 4. En déduire une expression simple de $P_n(2\cos(\theta))$ pour $\theta \in \mathbb{R}$.
- 5. Déterminer les racines de P_n .

Corrigé:

1. Le calcul donne

$$P_2 = X^2 - 2$$
 et $P_3 = X^3 - 3X$

2. On peut aisément conjecturer

$$\forall n \in \mathbb{N}^*$$
 $P_n = X^n + Q_n$ avec $Q_n \in \mathbb{R}_{n-1}[X]$

Montrons cette propriété par récurrence double. Notons :

$$\mathscr{P}(n): \quad P_n = X^n + Q_n \quad \text{avec} \quad Q_n \in \mathbb{R}_{n-1}[X]$$

- Les propriétés $\mathcal{P}(1)$ et $\mathcal{P}(2)$ sont clairement vraies.
- $\mathscr{P}(n)$ et $\mathscr{P}(n+1) \Longrightarrow \mathscr{P}(n+2)$: On suppose $\mathscr{P}(n)$ et $\mathscr{P}(n+1)$ vraies pour n entier non nul fixé. On a

$$P_{n+2} = XP_{n+1} - P_n = X(X^{n+1} + Q_{n+1}) - P_n$$

= $X^{n+2} + Q_{n+2}$

$$Q_{n+2} = XQ_{n+1} - P_n \in \mathbb{R}_{n+1}[X]$$

ce qui clôt la récurrence. Ainsi

$$\forall n \in \mathbb{N}^*$$
 $P_n = X^n + Q_n$ avec $Q_n \in \mathbb{R}_{n-1}[X]$

3. On procède là encore par récurrence double. Notons

$$\mathscr{P}(n): \forall z \in \mathbb{C}^* \qquad P_n(z+1/z) = z^n + 1/z^n$$

- La vérification de $\mathcal{P}(0)$ et $\mathcal{P}(1)$ est immédiate.
- $\mathscr{P}(n)$ et $\mathscr{P}(n+1) \Longrightarrow \mathscr{P}(n+2)$: On suppose $\mathscr{P}(n)$ et $\mathscr{P}(n+1)$ vraies pour n entier fixé. On a

$$P_{n+2}(z+1/z) = (z+1/z)P_{n+1}(z+1/z) - P_n(z+1/z)$$
$$= (z+1/z)(z^{n+1}+1/z^{n+1}) - (z^n+1/z^n) = z^{n+2}+1/z^{n+2}$$

ce qui clôt la récurrence. Par conséquent

$$\forall (n, z) \in \mathbb{N} \times \mathbb{C}^*$$
 $P_n(z + 1/z) = z^n + 1/z^n$

4. Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. D'après l'identité d'Euler, on a $2\cos(\theta) = e^{i\theta} + e^{-i\theta}$. Par suite, il vient

$$P_n(2\cos(\theta)) = P_n(e^{i\theta} + e^{-i\theta}) = e^{in\theta} + e^{-in\theta}$$

On en déduit

$$\forall \theta \in \mathbb{R}$$
 $P_n(2\cos(\theta)) = 2\cos(n\theta)$

5. A l'aide de la question précédente, déterminons les racines de P_n . Pour $\theta \in \mathbb{R}$, on a

$$P_n(2\cos(\theta)) = 0 \iff 2\cos(n\theta) = 0 \iff n\theta \equiv \frac{\pi}{2} [\pi] \iff \theta \in \left\{ \frac{\pi}{2n} + \frac{k\pi}{n}, \ k \in \mathbb{Z} \right\}$$

L'application $\theta \mapsto 2\cos(\theta)$ est strictement décroissante sur $[0;\pi]$ donc injective sur cet intervalle.

Comme on a

$$0 < \frac{\pi}{2n}$$
 et $\frac{\pi}{2n} + \frac{(n-1)\pi}{n} = \pi - \frac{\pi}{2n} < \pi$

on en déduit

Card
$$\left\{ 2\cos\left\{\frac{\pi}{2n} + \frac{k\pi}{n}\right\}, \ k \in [0; n-1] \right\} = n$$

Comme P_n est un polynôme de degré n, il admet au plus n racines et on a donc déterminé exactement toutes ses racines. Le coefficient dominant de P_n étant égal à 1, on en déduit la forme factorisée

$$\forall n \in \mathbb{N}^*$$
 $P_n(X) = \prod_{k=1}^n \left(X - 2\cos\left[\pi\left(\frac{2k+1}{2n}\right)\right] \right)$

Exercice 10 (*)

Soit

$$\varphi \colon \begin{cases} \mathbb{K}_{2n-1}[X] \longrightarrow \mathbb{K}^{2n} \\ P \longmapsto (P(0), P'(0), \dots, P^{(n-1)}(0), P(1), P'(1), \dots, P^{(n-1)}(1)) \end{cases}$$

Montrer que φ est bijective.

Corrigé : On a $\varphi \in \mathcal{L}(\mathbb{K}_{2n-1}[X], \mathbb{K}^{2n})$, la linéarité résultant simplement de la linéarité de la dérivation. On remarque l'égalité des dimensions

$$\dim \mathbb{K}_{2n-1}[X] = \dim \mathbb{K}^{2n}$$

On a donc φ isomorphisme si et seulement si φ injective (si et seulement si φ surjective). Soit $P \in \text{Ker } \varphi$. On a 0 et 1 qui sont racines de P de mulitplicité n donc X^n et $(X-1)^n$ divise P. Comme ces polynômes sont premiers entre eux, on a $X^n(X-1)^n$ divise P mais deg $P \leq 2n-1$. Il s'ensuit que P est le polynôme nul et par suite

L'application
$$\varphi$$
 est un isomorphisme de $\mathbb{K}_{2n-1}[X]$ sur \mathbb{K}^{2n} .

Exercice 11 (**)

Soit $X \subset \mathbb{R}$ un ensemble fini non vide. Montrer qu'il existe $P \in \mathbb{R}[X]$ tel que

$$\forall x \in X \qquad P(x) = \sqrt[3]{x}$$

Corrigé: Notons $X = \{x_1, \ldots, x_n\}$ et $(L_i)_{1 \le i \le n}$ la famille des polynômes interpolateurs de Lagrange associés à X. On a $L_i(x_j) = \delta_{i,j}$ pour tout $(i,j) \in [1; n]^2$. On choisit alors $P = \sum_{i=1}^n \sqrt[3]{x_i} L_i$. On a

$$\forall j \in [1; n] \qquad P(x_j) = \sum_{i=1}^n \sqrt[3]{x_i} L_i(x_j) = \sum_{i=1}^n \sqrt[3]{x_i} \delta_{i,j} = \sqrt[3]{x_j}$$

Exercice 12 (**)

Soit $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$. Établir $P(X + a) = \sum_{k=0}^{+\infty} a^k \frac{P^{(k)}}{k!}$

Corrigé: D'après la formule de Taylor, on a

$$P = \sum_{k=0}^{+\infty} \frac{P^{(k)}(a)}{k!} (X - a)^k$$

d'où

$$P(X + a) = \sum_{k=0}^{+\infty} \frac{P^{(k)}(a)}{k!} X^k$$

et par conséquent

$$\forall (x,a) \in \mathbb{K}^2$$
 $P(x+a) = \sum_{k=0}^{+\infty} x^k \frac{P^{(k)}(a)}{k!}$

d'où, en échangeant les rôles

$$\forall (a, x) \in \mathbb{K}^2$$
 $P(a + x) = \sum_{k=0}^{+\infty} a^k \frac{P^{(k)}(x)}{k!}$

Ainsi, pour $a \in \mathbb{K}$, le polynôme $P(X + a) - \sum_{k=0}^{+\infty} a^k \frac{P^{(k)}}{k!}$ admet une infinité de racines et par conséquent

$$P(X+a) = \sum_{k=0}^{+\infty} a^k \frac{P^{(k)}}{k!}$$

Exercice 13 (*)

On pose $E = \left\{ M(a, b) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, (a, b) \in \mathbb{R}^2 \right\}$

Montrer que E est un algèbre réelle commutative pour les lois usuelles.

Corrigé: Notons $K = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. On a clairement $E = \text{Vect}(I_n, K)$ d'où $I_n \in E$, E est un sev de $\mathcal{M}_2(\mathbb{R})$ et pour (a, b), (c, d) dans \mathbb{R}^2 , on a

$$M(a,b)M(c,d) = M(ac - bd, ad + bc) = M(c,d)M(a,b)$$

Ceci prouve que E est une sous-algèbre commutative de $(\mathcal{M}_2(\mathbb{R}), +, \times, \cdot)$ d'où

L'ensemble E est une
$$\mathbb{R}$$
-algèbre commutative.

Exercice 14 (*)

Déterminer les morphismes de \mathbb{R} -algèbres de \mathbb{C} dans \mathbb{C} .

Corrigé : Soit $\varphi : \mathbb{C} \to \mathbb{C}$ un morphisme de \mathbb{R} -algèbres. On a $\varphi(1) = 1$ puis, pour $(x, y, \lambda) \in \mathbb{C}^2 \times \mathbb{R}$

$$\varphi(\lambda x + y) = \lambda \varphi(x) + \varphi(y)$$
 $\varphi(xy) = \varphi(x)\varphi(y)$

Ainsi $\varphi(\mathbf{i}^2) = \varphi(-1) = -\varphi(1) = -1 = \varphi(\mathbf{i})^2$

d'où $\varphi(i) = \pm i$. On en déduit que φ est l'identité ou la conjugaison. Réciproquement, on vérifie que ces applications sont bien des morphisme de \mathbb{R} -algèbres de \mathbb{C} dans \mathbb{C} et on conclut

Les morphismes de \mathbb{R} -algèbres de \mathbb{C} dans \mathbb{C} sont l'identité et la conjugaison.