Devoir en temps libre n°04

Problème I

Soit $f \in \mathcal{C}^2(\mathbb{R}_+, \mathbb{R})$ positive, bornée telle que $f \leqslant f''$.

- 1. Montrer que f est convexe et décroissante.
- 2. Établir

$$f(x) \xrightarrow[x \to +\infty]{} 0$$
 et $f'(x) \xrightarrow[x \to +\infty]{} 0$

- $g(x) = f(x)e^{x}$ et $h(x) = (f'(x) + f(x))e^{-x}$ $\forall x \geqslant 0$ 3. On pose Étudier les variations de h et de g ainsi que le signe de h.
- 4. En déduire

$$\forall x \geqslant 0$$
 $f(x) \leqslant f(0)e^{-x}$

Problème II

Soit $E = \mathcal{M}_n(\mathbb{K})$ avec n entier non nul. On note

$$\Lambda = \{ T \in \mathscr{L}(E, \mathbb{K}) \quad | \quad \forall (A, B) \in E^2 \qquad T(AB) = T(BA) \}$$

- 1. Établir
- $\forall (A, B) \in E^2$ $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$
- 2. Soit $T \in \Lambda$ et $\alpha = T(E_{1,1})$.
 - (a) Déterminer $T(E_{i,j})$ pour $(i,j) \in [1; n]^2$.
 - (b) En déduire une relation entre T et la trace Tr.
- 3. Conclure en décrivant Λ en fonction de Tr.

Problème III

Soit $(T_n)_n$ une suite de polynômes de $\mathbb{R}[X]$ définie par

$$T_0 = 1$$
, $T_1 = 2X$ $\forall n \in \mathbb{N}$ $T_n = 2XT_{n-1} - T_{n-2}$

- 1. Calculer T_2, T_3 .
- 2. Déterminer le degré, le coefficient dominant et la parité de T_n .
- 3. Montrer que
- $\forall \theta \in]0; \pi[$ $T_n(\cos \theta) = \frac{\sin((n+1)\theta)}{\sin(\theta)}$
- 4. En déduire une expression factorisée de T_n .

Problème IV

Soit n entier non nul et $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$. On pose $V = (\omega^{(k-1)(\ell-1)})_{1 \leq k, \ell \leq n+1} \in \mathcal{M}_{n+1}(\mathbb{C})$ avec $\omega = e^{\frac{2i\pi}{n+1}}$.

- 1. Calculer $V\bar{V}$. En déduire l'inversibilité de la matrice V et préciser son inverse.
- 2. Pour $k \in [0; n]$, déterminer une expression simple de a_k en fonction des $P(\omega^{\ell})$ avec $\ell \in [0; n]$.
- 3. En déduire $\forall k \in [\![\,0\,;\,n\,]\!] \qquad |a_k| \leqslant \sup_{z \in \mathbb{U}} |\mathcal{P}(z)|$