Corrigé du devoir surveillé n°2

Problème I

1. On pose $\forall (x,t) \in X \times I \qquad f(x,t) = \frac{\cos(t) - \cos(2t)}{t} e^{-xt}$

avec X=]0; $+\infty$ [et I=]0; $+\infty$ [. Vérifions les hypothèses du théorème de régularité \mathscr{C}^1 sous l'intégrale.

• Soit $x \in X$. On a $t \mapsto \frac{\cos(t) - \cos(2t)}{t} e^{-xt} \in \mathscr{C}_{pm}(I, \mathbb{R})$. Sur]0;1], en utilisant $\cos u = 1 + o(u)$, on a

$$\frac{\cos(t) - \cos(2t)}{t} e^{-xt} = o(1)e^{-xt} \xrightarrow[t \to 0]{} 0$$

D'où l'intégrande est prolongeable par continuité donc $\int_0^1 f(x,t) dt$ converge absolument.

Sur $[1; +\infty[$, on a $0 \le \left| \frac{\cos(t) - \cos(2t)}{t} e^{-xt} \right| \le \frac{2}{t} e^{-xt} \le 2e^{-xt}$

et $\int_0^{+\infty} 2e^{-xt} dt$ converge d'où, par comparaison, $\int_1^{+\infty} f(x,t) dt$ converge absolument. On a donc l'intégrabilité de $t \mapsto f(x,t)$ sur I.

ullet Pour $t\in \mathcal{I}$, on a $x\mapsto f(x,t)$ de classe \mathscr{C}^1 sur X d'après les théorèmes généraux. Par dérivation, on trouve

$$\forall (x,t) \in X \times I$$
 $\frac{\partial f}{\partial x}(x,t) = (\cos(2t) - \cos(t)) e^{-xt}$

- Pour $x \in X$, on a $t \mapsto \frac{\partial f}{\partial x}(x,t) \in \mathscr{C}_{pm}(I,\mathbb{R})$ par théorèmes généraux.
- Domination : Une domination globale ne fonctionne pas. Soit $X_a = [a; +\infty [$ avec a > 0. Posons $\varphi(t) = 2e^{-at}$ pour tout $t \in I$. On a

$$\forall (x,t) \in X_a \times I$$
 $\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| \cos(t) - \cos(2t) \right| e^{-xt} \leqslant 2e^{-at} = \varphi(t)$

La fonction φ est clairement intégrable sur I. Ainsi, on a F de classe \mathscr{C}^1 sur $[a; +\infty[$ avec a>0 quelconque d'où

La fonction F est de classe
$$\mathscr{C}^1$$
 sur] 0 ; $+\infty$ [.

3. D'après l'inégalité des accroissements finis, comme $|\cos'| = |\sin| \le 1$, on a

$$\forall (x,y) \in \mathbb{R}^2 \qquad |\cos(x) - \cos(y)| \leqslant |x - y|$$

Autrement dit

La fonction cos est 1-lipschitzienne.

4. D'après ce qui précède, il vient

$$\forall (x,t) \in \mathbf{X} \times \mathbf{I} \qquad 0 \leqslant |f(x,t)| = \left| \frac{\cos(t) - \cos(2t)}{t} \right| e^{-xt} \leqslant \left| \frac{t - 2t}{t} \right| e^{-xt} = e^{-xt}$$

Comme $\int_0^{+\infty} e^{-xt} dt$ converge, il vient par comparaison

$$\forall x \in \mathbf{X}$$
 $0 \leqslant |\mathbf{F}(x)| \leqslant \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$

Par encadrement, comme $\frac{1}{x} = o_{x \to +\infty}(1)$, il en résulte que

$$\lim_{x \to +\infty} F(x) = 0$$

4. Par dérivation sous l'intégrale, il vient

$$\forall x > 0 \qquad F'(x) = \int_0^{+\infty} \left[\cos(2t) - \cos(t)\right] e^{-xt} dt$$

Par linéarité car convergence (absolue) de $\int_0^{+\infty} \cos(t) e^{-xt} dt$ et $\int_0^{+\infty} \cos(2t) e^{-xt} dt$, on a

$$\forall x > 0$$
 $F'(x) = \int_0^{+\infty} \cos(2t) e^{-xt} dt - \int_0^{+\infty} \cos(t) e^{-xt} dt$

Enfin par convergence absolue de $\int_0^{+\infty} e^{-(x-i)t} dt$ et $\int_0^{+\infty} e^{-(x-2i)t} dt$, on trouve

$$\forall x > 0 \qquad F'(x) = \text{Re}\left(\int_0^{+\infty} e^{-(x-2i)t} dt - \int_0^{+\infty} e^{-(x-i)t} dt\right)$$
$$= \text{Re}\left(\frac{1}{x-2i} - \frac{1}{x-i}\right) = \frac{x}{x^2+4} - \frac{x}{1+x^2}$$

Par intégration, on trouve

$$\forall x > 0$$
 $F(x) = \frac{1}{2}\ln(4+x^2) - \frac{1}{2}\ln(1+x^2) + \alpha = \frac{1}{2}\ln\left(\frac{4+x^2}{1+x^2}\right) + \alpha$

avec α réel. Enfin, faisant tendre $x \to +\infty$, on a $\left(\frac{4+x^2}{1+x^2}\right) \xrightarrow[x \to +\infty]{} 1$ d'où $F(x) \xrightarrow[x \to +\infty]{} \alpha = 0$.

On conclut

$$\forall x > 0 \qquad F(x) = \frac{1}{2} \ln \left(\frac{4 + x^2}{1 + x^2} \right)$$

Problème II

1. Par décroissance de f, on a

$$\forall n \in \mathbb{N} \qquad \int_0^{n+1} f(t) \, \mathrm{d}t \leqslant \sum_{k=0}^n f(k) \leqslant f(0) + \int_0^n f(t) \, \mathrm{d}t$$

On note $S_n = \sum_{k=0}^n f(k)$ pour n entier. Si l'intégrale $\int_0^{+\infty} f(t) dt$ converge, alors la suite $\left(\int_0^n f(t) dt\right)_n$ est majorée d'où la convergence de la série $\sum f(n)$. Si l'intégrale $\int_0^{+\infty} f(t) dt$ diverge, alors $\int_0^x f(t) dt \xrightarrow[x \to +\infty]{} +\infty$ puisqu'il s'agit d'une fonction croissante non majorée d'après le théorème de limite monotone. En particulier, on a $\int_0^{n+1} f(t) dt \xrightarrow[n \to \infty]{} +\infty$ d'où $S_n \xrightarrow[n \to \infty]{} +\infty$. On conclut

La série
$$\sum f(n)$$
 est de même nature que l'intégrale $\int_0^{+\infty} f(t) dt$.

2. Si $\alpha \leqslant 0$, la série diverge grossièrement. Si $\alpha > 0$, on applique le théorème de comparaison série/intégrale avec $[1; +\infty[\to \mathbb{R}, t \mapsto \frac{1}{t^{\alpha}}$ qui est décroissante positive et on conclut d'après le critère de Riemann pour les intégrales généralisées que

$$\sum_{n\geqslant 1} \frac{1}{n^{\alpha}} \text{ converge } \iff \alpha > 1$$

3. Soit $\alpha > 1$. On a

$$S(\alpha) = 1 + \sum_{n=2}^{+\infty} \frac{1}{n^{\alpha}} \geqslant 1$$

On trouve par décroissance de $t \mapsto \frac{1}{t^{\alpha}}$

$$\forall k \geqslant 2$$
 $\frac{1}{k^{\alpha}} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t^{\alpha}}$

En sommant pour $k \in [2; n]$ puis faisant tendre $n \to +\infty$ puisque tout converge, on obtient

$$S(\alpha) - 1 \leqslant \int_{1}^{+\infty} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1}$$

On conclut

$$\forall \alpha > 1$$
 $1 \leqslant S(\alpha) \leqslant 1 + \frac{1}{\alpha - 1}$

4. Toujours par comparaison série/intégrale, on obtient

$$\int_{n}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \leqslant \mathrm{R}_{n}(\alpha) \leqslant \int_{n-1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$$

Puis

$$\int_{n}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \left[\frac{1}{(1-\alpha)t^{\alpha-1}} \right]_{n}^{+\infty} = \frac{1}{(\alpha-1)n^{\alpha-1}}$$

et

$$\int_{n-1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{(\alpha - 1)(n - 1)^{\alpha - 1}} = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + o\left(\frac{1}{n^{\alpha - 1}}\right)$$

Ainsi

$$R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + O\left(\frac{1}{n^{\alpha}}\right)$$

5. La fonction f est de classe \mathscr{C}^3 sur] $0\,; {\scriptstyle +\infty}\,[$ et par dérivation

$$\forall x > 0$$
 $f'(x) = \frac{1}{x^{\alpha}}$ $f''(x) = -\frac{\alpha}{x^{\alpha+1}}$ $f^{(3)}(x) = \frac{\alpha(\alpha+1)}{x^{\alpha+2}}$

D'après la formule de Taylor reste intégral, on a pour k entier

$$f(k+1) - f(k) = f'(k) + \frac{1}{2}f''(k) + \frac{1}{2}\int_{k}^{k+1} (k+1-t)^{2}f^{(3)}(t) dt$$
$$= \frac{1}{k^{\alpha}} - \frac{\alpha}{2}\frac{1}{k^{\alpha+1}} + \frac{\alpha(\alpha+1)}{2}\int_{k}^{k+1} \frac{(k+1-t)^{2}}{t^{\alpha+2}} dt$$

et on a

$$\int_{t_{h}}^{k+1} \frac{(k+1-t)^{2}}{t^{\alpha+2}} dt \leqslant \int_{t_{h}}^{k+1} \frac{(k+1-k)^{2}}{k^{\alpha+2}} dt = \frac{1}{k^{\alpha+2}}$$

6. La fonction f admet une limite nulle en $+\infty$ d'où la convergence de la série téléscopique $\sum [f(k+1)-f(k)]$ puis pour n entier

$$\sum_{k=n}^{+\infty} [f(k+1) - f(k)] = -f(n) = \sum_{k=n}^{+\infty} \left[\frac{1}{k^{\alpha}} - \frac{\alpha}{2} \frac{1}{k^{\alpha+1}} + A_k \right]$$

et par linéarité du symbole Σ par convergence de chacune des séries concernées, on obtient

$$-f(n) = R_n(\alpha) - \frac{\alpha}{2} R_n(\alpha + 1) + \sum_{k=n}^{+\infty} A_k$$
d'où
$$R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} - \frac{\alpha}{2} \left[\frac{1}{\alpha n^{\alpha}} + O\left(\frac{1}{n^{\alpha}}\right) \right] + \sum_{k=n}^{+\infty} A_k$$
avec
$$\sum_{k=n}^{+\infty} A_k \leqslant \frac{\alpha(\alpha + 1)}{2} \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha + 2}} = \frac{\alpha(\alpha + 1)}{2} R_n(\alpha + 2) = O\left(\frac{1}{n^{\alpha + 1}}\right)$$
On conclut
$$R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + \frac{1}{2n^{\alpha}} + O\left(\frac{1}{n^{\alpha + 1}}\right)$$

E3A - MP - Maths 2

Partie I

- 1. Une fonction $f: I \longrightarrow \mathbb{R}$ est convexe sur l'intervalle I si, pour tout $(x,y) \in I^2$ et tout $\theta \in]0,1[$, on a $f((1-\theta)x + \theta y) \leq (1-\theta)f(x) + \theta f(y)$.
- 2. La fonction exponentielle est de classe C^2 sur \mathbb{R} et sa dérivée seconde y est positive, elle est donc convexe sur \mathbb{R} .
- 3. Appliquons la définition vue en 1. avec $f = \exp \operatorname{et}(x, y) = (\ln b, \ln a)$. On obtient

$$\exp(\theta \ln a + (1 - \theta) \ln b) \le \theta e^{\ln a} + (1 - \theta) e^{\ln b}$$

qui constitue le résultat demandé.

Partie II

- 4. (a) On a immédiatement $\int_{u}^{v} t^{x-1} dt = \frac{v^x u^x}{x}$.
 - (b) La fonction intégrée étant positive, il revient au même d'étudier la convergence (non absolue) de l'intégrale. Or, la fonction intégrée est définie et continue sur]0,1], et la question précédente montre que $\int_u^1 t^{x-1} dt$ a pour limite 1/x quand u tend vers 0 (puisque x > 0).

L'intégrale est donc absolument convergente et vaut 1/x.

Remarque : cela semble être ce qu'attend l'énoncé au vu de la question (a) ; mais Riemann donne évidemment la convergence immédiatement.

- 5. La fonction $t \mapsto t^{x-1}e^{-t}$ est définie, continue et positive sur]0,1], et majorée par la fonction intégrable $t \mapsto t^{x-1}$; elle est donc bien intégrable sur]0,1].
- 6. (a) Puisque x > 0, on sait que $t^{x/2} \ln t$ tend vers 0 en 0 (croissances comparées).
 - (b) La fonction $t \mapsto (\ln t)t^{x-1}e^{-t}$ est définie et continue sur]0,1]. D'autre part, la question (a) montre que $\ln t = o(t^{-x/2})$ au voisinage de 0, et donc $(\ln t)t^{x-1}e^{-t} = o(t^{x/2-1}e^{-t})$ en 0. Puisque x/2 > 0, la fonction positive $t \mapsto t^{x/2-1}e^{-t}$ est intégrable sur]0,1] d'après 5. ; par suite, $t \mapsto (\ln t)t^{x-1}e^{-t}$ l'est aussi.
- 7. (a) Soit $t \in]0,1]$. La fonction $x \longmapsto t^{x-1} = e^{(x-1)\ln t}$ est alors décroissante sur [u,v] (puisque $\ln t \leqslant 0$); on a donc bien $\left| (\ln t)^2 t^{x-1} e^{-t} \right| = (\ln t)^2 t^{x-1} e^{-t} \leqslant (\ln t)^2 t^{u-1}$ puisque tous les facteurs sont positifs.
 - (b) On raisonne comme en 6.(b) : on a aussi $(\ln t)^2 = o(t^{x/2})$ en 0, et donc $(\ln t)^2 t^{x-1} e^{-t} = o(t^{x/2-1}e^{-t})$ en 0, ce qui suffit à garantir l'intégrabilité.
- 8. Soit $[u,v] \subset \mathbb{R}_+^*$. On applique, sur [u,v], le théorème de dérivation des intégrales à paramètre, version dérivées successives. Posons, pour $t \in [0,1]$ et $x \in [u,v]$, $f(x,t) = t^{x-1}e^{-t}$. On a alors:
 - pour tout $x \in [u, v]$, $f(x, \cdot)$ est continue par morceaux et intégrable sur [0, 1] (question 5.);
 - f admet des dérivées partielles première et seconde par rapport à x en tout point de $[u,v] \times]0,1]$;
 - pour tout $x \in [u, v]$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x, t) = (\ln t)t^{x-1}e^{-t}$ est continue par morceaux et intégrable sur]0, 1] (question 6.);
 - enfin, $\forall x \in [u, v] \quad \forall t \in]0, 1] \quad \left| \frac{\partial^2 f}{\partial x^2}(x, t) \right| = \left| (\ln t)^2 t^{x-1} e^{-t} \right| \leq (\ln t)^2 t^{u-1} e^{-t} = \varphi(t) \quad \text{et } \varphi \text{ est continue par morceaux et intégrable sur } [0, 1] \text{ (question 7.)}.$

On peut alors conclure que F est de classe C^2 sur [u, v], et ce pour tout $[u, v] \subset \mathbb{R}_+^*$, donc que F est de classe C^2 sur \mathbb{R}_+^* ; et que, pour tout x > 0,

$$F'(x) = \int_0^1 \frac{\partial f}{\partial x}(x,t) \, dt = \int_0^1 (\ln t) t^{x-1} e^{-t} \, dt \quad \text{et} \quad F''(x) = \int_0^1 \frac{\partial^2 f}{\partial x^2}(x,t) \, dt = \int_0^1 (\ln t)^2 t^{x-1} e^{-t} \, dt$$

1

Partie III

- 9. On a par exemple $(\ln t)^2 = o(t)$ en $+\infty$ par croissances comparées, donc $(\ln t)^2 t^{x-1} e^{-t/2} = o(t^x e^{-t/2})$; puisque $t^x e^{-t/2}$ a pour limite 0 en $+\infty$, c'est aussi le cas pour $(\ln t)^2 t^{x-1} e^{-t/2}$.
- 10. La fonction $t \mapsto (\ln t)^2 t^{x-1} e^{-t}$ est définie et continue par morceaux sur $[1, +\infty[$; la question 9. montre qu'elle est négligeable devant $e^{-t/2}$ en $+\infty$.

Puisque $t \mapsto e^{-t/2}$ est positive et notoirement intégrable sur $[1, +\infty[$ (car négligeable devant $1/t^2$ par exemple), $t \mapsto (\ln t)^2 t^{x-1} e^{-t}$ est elle aussi intégrable sur $[1, +\infty[$.

Enfin, puisque $\ln t$ tend vers $+\infty$ en $+\infty$, les fonctions proposées en (a) et (b) sont négligeables devant $|(\ln t)^2 t^{x-1} e^{-t}|$ en $+\infty$, donc sont elles aussi intégrables sur $[1, +\infty[$.

11. La démonstration est quasi identique à celle de la question 8. La seule différence notable est qu'ici, pour tout $t \in [1, +\infty[$, la fonction $x \longmapsto t^{x-1}$ est croissante; il faut donc dominer $(\ln t)^2 t^{x-1} e^{-t}$ par la valeur pour x = v au lieu de x = u.

Partie IV

12. Les facteurs étant de classe C^1 sur \mathbb{R}_+^* , on peut intégrer par parties, en primitivant le facteur e^{-t} :

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = \left[-t^x e^{-t} \right]_{t=0}^{+\infty} + \int_0^{+\infty} x t^{x-1} e^{-t} dt = x \Gamma(x)$$

l'intégration par parties étant justifiée par le fait que la fonction dans le crochet a des limites finies (nulles) en 0 et $+\infty$.

- 13. On a immédiatement $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = [-e^{-t}]_{t=0}^{+\infty} = 1.$
- 14. On a classiquement $\Gamma(n) = (n-1)!$ pour tout $n \in \mathbb{N}^*$, ce qui s'établit par une récurrence immédiate à l'aide des deux questions précédentes.
- 15. En particulier, $\Gamma(1) = \Gamma(2) = 1$. Puisque Γ est continue sur [1,2] et dérivable sur]1,2[, le théorème de Rolle montre que Γ' s'annule au moins une fois sur]1,2[.
- 16. Soit $x \in \mathbb{R}_+^*$; on sait que $\Gamma''(x) = \int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-t} dt$. La fonction $t \longmapsto (\ln t)^2 t^{x-1} e^{-t}$ est continue, positive, et non identiquement nulle sur \mathbb{R}_+^* ; par suite, $\Gamma''(x) > 0$.

Cela étant vrai pour tout x > 0, Γ est donc bien convexe sur \mathbb{R}_+^* .

17. Puisque Γ'' est strictement positive, Γ' est strictement croissante sur \mathbb{R}_{+}^{*} .

On a prouvé en 15. que Γ' s'annule en au moins un point $\alpha \in]1,2[$. La stricte croissance de Γ' montre que c'est son seul point d'annulation, et que Γ' est négative sur $]0,\alpha[$, positive sur $]\alpha,+\infty[$; par suite, Γ est décroissante sur $]0,\alpha[$, croissante sur $]\alpha,+\infty[$, et donc admet un minimum global en α .

18. Il reste à étudier le comportement de Γ aux bornes du domaine de définition.

Au voisinage de 0, $\Gamma(x) = \frac{\Gamma(x+1)}{x} \sim \frac{\Gamma(1)}{x} = \frac{1}{x}$ puisque Γ est en particulier continue en 1; par suite, Γ tend vers $+\infty$ en 0^+ .

Au voisinage de $+\infty$, Γ est croissante, donc admet une limite, finie ou infinie; et cette limite est $+\infty$ puisque $\Gamma(n)=(n-1)!$ a pour limite $+\infty$.

On en déduit aisément le tracé de la courbe.

Partie V

- 19. La fonction $x \mapsto \ln(e^{cx}) = cx$ est affine, donc convexe (et concave); $x \mapsto e^{cx}$ est donc bien ln-convexe.
- 20. Soient $(x,y) \in I^2$ et $\theta \in [0,1]$. En appliquant la fonction exponentielle (croissante) à l'inégalité qui caractérise la ln-convexité, on obtient

$$f(\theta x + (1 - \theta)y) \leqslant \exp(\theta \ln(f(x)) + (1 - \theta) \ln(f(y))) = f(x)^{\theta} f(y)^{1 - \theta}$$

La question 3 donne alors $f(x)^{\theta} f(y)^{1-\theta} \leq \theta f(x) + (1-\theta) f(y)$ en prenant a = f(x) et b = f(y). On a donc bien prouvé l'inégalité caractérisant la convexité de f.

2

La réciproque est fausse : la fonction $x \mapsto x$ est convexe sur \mathbb{R}_+^* , mais $x \mapsto \ln x$ ne l'est pas.

- 21. (a) Il suffit d'écrire l'inégalité $g_c(\theta x + (1-\theta)y) \leq \theta g_c(x) + (1-\theta)g_c(y)$ puis de la diviser par $\exp(\theta x + (1-\theta)y)$.
 - (b) i. Puisque 1θ , θ , y x et f(y) sont strictement positifs, le deuxième terme de la somme a pour limite $+\infty$ quand c tend vers $+\infty$. Le premier terme étant clairement positif, H(c) a pour limite $+\infty$ en $+\infty$.
 - ii. Dans la formule définissant $H(c_0)$, on remplace $e^{c_0(x-y)}$ par f(y)/f(x); on obtient

$$H(c_0) = \theta \frac{f(y)^{1-\theta}}{f(x)^{1-\theta}} f(x) + (1-\theta) \frac{f(y)^{-\theta}}{f(x)^{-\theta}} f(y)$$
$$= \theta f(x)^{\theta} f(y)^{1-\theta} + (1-\theta) f(x)^{\theta} f(y)^{1-\theta} = f(x)^{\theta} f(y)^{1-\theta}$$

- iii. Puisque H' s'annule en changeant de signe en c_0 , et que H tend vers $+\infty$ en $+\infty$, H ne peut être que décroissante sur $[0, c_0]$, et croissante sur $[c_0, +\infty[$; H admet donc un minimum en c_0 .
- (c) Puisque l'inégalité du (a) est vraie pour tout c > 0, elle est en particulier vraie pour $c = c_0$; donc

$$f(\theta x + (1 - \theta)y) \leqslant H(c_0) = f(x)^{\theta} f(y)^{1 - \theta}$$

En composant par ln (croissante), on obtient l'inégalité qui caractérise la ln-convexité de f.

- 22. La fonction $\varphi_{c,\theta}$ est de la forme $x \mapsto ae^{bx}$, avec $b = c + \ln \theta$ et $a = e^{-\theta}/\theta > 0$; par suite, pour tout x > 0, $\varphi''_{c,\theta}(x) = b^2 \varphi_{c,\theta}(x) \geqslant 0$, et donc $\varphi_{c,\theta}$ est convexe sur \mathbb{R}_+^* .
- 23. La fonction Γ prend bien ses valeurs dans \mathbb{R}_+^* (intégrale d'une fonction continue positive non identiquement nulle).

Soit d'autre part c > 0. Soit $\Delta : x \longmapsto e^{cx}\Gamma(x)$; notons que, pour tout x > 0.

$$\Delta(x) = \int_0^{+\infty} t^{x-1} e^{-t} e^{cx} dt = \int_0^{+\infty} \varphi_{c,t}(x) dt$$

Soient enfin $(x,y) \in (\mathbb{R}_+^*)^2$ et $\theta \in [0,1]$. On a alors

$$\Delta(\theta x + (1 - \theta)y) = \int_0^{+\infty} \varphi_{c,t}(\theta x + (1 - \theta)y) dt$$

$$\leq \int_0^{+\infty} [\theta \varphi_{c,t}(x) + (1 - \theta)\varphi_{c,t}(y)] dt \qquad \text{(convexit\'e de } \varphi_{c,t})$$

$$= \theta \Delta(x) + (1 - \theta)\Delta(y)$$

La fonction Δ est donc convexe, et ce pour tout c > 0; d'après la question 21., la fonction Γ est donc ln-convexe.

Partie VI

- 24. On démontre comme à la question 14. que g(n)=(n-1)! pour tout $n\in\mathbb{N}^*$.
- 25. (a) La fonction G est convexe sur \mathbb{R}_+^* . On sait qu'alors, pour tout $(a,b,c) \in (\mathbb{R}_+^*)^3$ tel que a < b < c, on a $\frac{G(b) G(a)}{b a} \leqslant \frac{G(c) G(a)}{c a} \leqslant \frac{G(c) G(b)}{c b}$ (inégalités des pentes).

En particulier,
$$0 < n-1 < n < n+x$$
, donc $\frac{G(n)-G(n-1)}{n-(n-1)} = G(n)-G(n-1) \leqslant \frac{G(n+x)-G(n-1)}{(n+x)-(n-1)} \leqslant \frac{G(n+x)-G(n)}{(n+x)-n} = \frac{G(n+x)-G(n)}{x}$ qui donne la première des inégalités demandées ; la deuxième s'obtient de même en utilisant $n < n+x < n+1$.

(b) On multiplie l'encadrement par x > 0, et on remplace G par $\ln g$; on obtient

$$x \ln \frac{g(n)}{g(n-1)} \leqslant \ln \frac{g(n+x)}{g(n)} \leqslant x \ln \frac{g(n+1)}{g(n)} \quad \text{soit} \quad \ln(n-1)^x \leqslant \ln \frac{g(x+n)}{(n-1)!} \leqslant \ln n^x$$

en utilisant g(p)=(p-1)! pour $p\in\mathbb{N}^*$; on en tire immédiatement l'encadrement demandé.

26. En utilisant la relation g(x+1) = xg(x), une récurrence immédiate fournit, pour tout $n \in \mathbb{N}^*$, $g(x+n) = x(x+1) \cdots (x+n-1)g(x)$.

Remplaçons g(x+n) par cette expression dans l'inégalité de la question précédente : on obtient

$$\frac{(n-1)^x(n-1)!}{x(x+1)\cdots(x+n-1)} = \frac{n-1}{x+n-1} \frac{(n-1)^x(n-2)!}{x(x+1)\cdots(x+n-2)} \leqslant g(x) \leqslant \frac{n^x(n-1)!}{x(x+1)\cdots(x+n-1)}$$

ce qui constitue l'encadrement demandé.

27. (a) La fonction $t \mapsto (1+t)^x$ est de classe C^{∞} sur \mathbb{R}_+ , de dérivée seconde $t \mapsto x(x-1)(1+t)^{x-2}$ négative puisque $x \in]0,1[$: elle est donc concave.

La courbe est donc sous ses tangentes, en particulier sous sa tangente en 0; ce qui donne, pour tout $t \in \mathbb{R}_+$, $(1+t)^x \leq 1+xt$ qui est l'inégalité demandée.

(b) On a clairement $u_n(x) > 0$ pour tout n. D'autre part, toujours pour tout $n \ge 2$,

$$\frac{u_{n+1}(x)}{u_n(x)} = \frac{(n+1)^x}{n^x} \frac{n}{x+n} = \left(1 + \frac{1}{n}\right)^x \frac{n}{x+n} \leqslant \left(1 + \frac{x}{n}\right) \frac{n}{x+n} = 1$$

en utilisant la question précédente avec $\alpha = 1/n > 0$; la suite $(u_n(x))$ est donc décroissante.

- (c) La suite est décroissante et minorée par g(x), donc elle converge vers une limite $\ell(x)$. On peut alors passer à la limite dans l'encadrement de la question 26. pour obtenir $\ell(x) \leq g(x) \leq \ell(x)$ et donc $\ell(x) = g(x)$.
- 28. La fonction Γ vérifie elle aussi les trois propriétés imposées à g au début de cette partie. On peut donc appliquer les résultats des questions précédentes à Γ ; en particulier, pour tout $x \in]0,1[$, $\Gamma(x) = \lim_{n \to +\infty} u_n(x) = g(x)$. Par suite, $\Gamma = g$ sur [0,1], puisque $\Gamma(1) = g(1) = 1$.

Les relations $\Gamma(x+1)=x\Gamma(x)$ et g(x+1)=xg(x) permettent alors de montrer par récurrence que, pour tout $x\in]0,1]$ et tout $n\in \mathbb{N},$ $\Gamma(x+n)=g(x+n)$; autrement dit, $\Gamma=g$ sur [n,n+1] pour tout $n\in \mathbb{N}$, et donc $\Gamma=g$ sur \mathbb{R}_+^* .