Devoir surveillé n°2 - 4h

Problème I

On pose

$$\forall x > 0 \qquad F(x) = \int_0^{+\infty} \frac{\cos(t) - \cos(2t)}{t} e^{-xt} dt$$

- 1. Montrer que F est de classe \mathscr{C}^1 sur] 0; $+\infty$ [.
- 2. Justifier que cos est 1-lipschitzienne.
- 3. En déduire $\lim_{x\to +\infty} F(x)$.
- 4. Déterminer une expression de F(x) pour x > 0.

Problème II

- 1. Soit $f \in \mathscr{C}_{pm}(\mathbb{R}_+, \mathbb{R}_+)$ décroissante. Montrer que la série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f(t) dt$ sont de même nature.
- 2. En déduire la nature de la série de Riemann $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ en fonction de α réel.

En cas de convergence, on pose $S(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$.

3. Montrer

$$\forall \alpha > 1$$
 $1 \leqslant S(\alpha) \leqslant 1 + \frac{1}{\alpha - 1}$

Pour $\alpha > 1$ et n entier non nul, on note $R_n(\alpha) = \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}}$.

4. Montrer

$$R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + O\left(\frac{1}{n^{\alpha}}\right)$$

5. On pose

$$\forall x > 0 \qquad f(x) = \frac{1}{(1 - \alpha)x^{\alpha - 1}}$$

Avec une formule de Taylor reste intégral, montrer

$$\forall k \in \mathbb{N}^* \qquad f(k+1) - f(k) = \frac{1}{k^{\alpha}} - \frac{\alpha}{2} \frac{1}{k^{\alpha+1}} + A_k \quad \text{avec} \quad 0 \leqslant A_k \leqslant \frac{\alpha(\alpha+1)}{2k^{\alpha+2}}$$

6. En déduire

$$R_n(\alpha) = \frac{1}{(\alpha - 1)n^{\alpha - 1}} + \frac{1}{2n^{\alpha}} + O\left(\frac{1}{n^{\alpha + 1}}\right)$$

Problème III

Partie I

- 1. Rappeler la définition d'une fonction convexe.
- 2. Justifier le fait que la fonction exponentielle est convexe sur \mathbb{R} . On citera précisément le théorème utilisé.
- 3. Soient a et b des nombres réels strictement positifs. Soit θ dans l'intervalle]0,1[. Démontrer l'inégalité :

$$a^{\theta}b^{(1-\theta)} < \theta a + (1-\theta)b.$$

Partie II

Soit x un nombre réel strictement positif. Soient u et v deux nombres réels tels que 0 < u < v.

- 4. (a) Que vaut $\int_u^v t^{x-1} dt$?
 - (b) Justifier que l'intégrale $\int_0^1 t^{x-1} dt$ converge absolument. Quelle est sa valeur ?
- 5. Démontrer que l'intégrale $\int_0^1 t^{x-1} e^{-t} dt$ converge absolument.
- 6. (a) Déterminer la limite lorsque t tend vers 0 de $t^{x/2} \ln t$.
 - (b) Démontrer que l'intégrale $\int_0^1 (\ln t) t^{x-1} e^{-t} dt$ converge absolument.
- 7. On suppose que $x \in [u, v]$.
 - (a) Justifier que $|(\ln t)^2 t^{x-1} e^{-t}| \le (\ln t)^2 t^{u-1}$, pour tout t dans [0, 1].
 - (b) Démontrer que l'intégrale $\int_0^1 (\ln t)^2 t^{x-1} e^{-t} dt$ converge absolument.
- 8. Soit F l'application définie par, pour x, un nombre réel strictement positif:

$$F(x) = \int_0^1 t^{x-1} e^{-t} dt$$

Démontrer que F définit une fonction de classe C^2 sur $]0, +\infty[$. Expliciter sous forme d'intégrale sa dérivée et sa dérivée seconde. On citera explicitement le théorème utilisé.

Partie III

- 9. Soit x un nombre réel strictement positif. Déterminer la limite lorsque t tend vers $+\infty$ de $(\ln t)^2 t^{x-1} e^{-t/2}$.
- 10. En déduire que :
 - (a) l'intégrale $\int_1^{+\infty} t^{x-1} e^{-t} dt$ converge absolument.
 - (b) l'intégrale $\int_1^{+\infty} (\ln t) t^{x-1} e^{-t} dt$ converge absolument.

- (c) l'intégrale $\int_1^{+\infty} (\ln t)^2 t^{x-1} e^{-t} dt$ converge absolument.
- 11. Soit G l'application définie par, pour x nombre réel strictement positif:

$$G(x) = \int_{1}^{+\infty} t^{x-1} e^{-t} dt$$

Démontrer que G définit une fonction de classe C^2 sur $]0, +\infty[$. Expliciter sous forme d'intégrale sa derivée et sa derivée seconde.

Partie IV

On peut donc définir la fonction Γ de la variable réelle x strictement positive en posant :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Comme $\Gamma = F + G$, on sait que Γ est une fonction de classe C^2 sur $]0, +\infty[$.

12. En utilisant une intégration par parties, démontrer l'égalité :

$$\forall x \in]0, +\infty[, \Gamma(x+1) = x\Gamma(x).$$

- 13. Calculer la valeur de $\Gamma(1)$.
- 14. En déduire la valeur de $\Gamma(n)$ pour tout entier naturel n non nul.
- 15. Justifier que la fonction Γ' admet au moins un zéro situé dans l'intervalle]1, 2[. On citera explicitement le théorème utilisé.
- 16. Justifier que la fonction Γ est une fonction convexe sur l'intervalle $]0, +\infty[$.
- 17. Justifier que la fonction Γ' admet un unique zéro, noté α , dans l'intervalle $]0, +\infty[$ et que la fonction Γ admet un minimum global en α .
- 18. Représenter le graphe de la fonction Γ sur $]0, +\infty[$.

Partie V

Soit I un intervalle de \mathbb{R} . Une fonction f, définie sur l'intervalle I et à valeurs dans l'intervalle $]0, +\infty[$, est dite \ln -convexe si

$$\forall (x,y) \in I^2, \forall \theta \in [0,1], \ln(f(\theta x + (1-\theta)y)) \le \theta \ln(f(x)) + (1-\theta) \ln(f(y)).$$

La fonction f est donc ln-convexe si et seulement si la fonction $\ln(f)$ est convexe.

19. Soit c un nombre réel. Justifier le fait que la fonction $x \mapsto e^{cx}$ est ln-convexe sur \mathbb{R} .

- 20. Soit f une fonction de l'intervalle I à valeurs dans l'intervalle $]0, +\infty[$ ln-convexe. Démontrer que f est convexe. La réciproque est-elle vraie? Si oui, on justifiera précisément sa réponse et si non, on donnera un contre-exemple.
- 21. Soit f une fonction de l'intervalle I à valeurs dans l'intervalle $]0,+\infty[$. On suppose que, pour tout nombre réel c strictement positif, la fonction g_c définie pour x dans I par $g_c(x) = e^{cx} f(x)$ est convexe.

Soient x, y dans I, x < y, et θ dans]0, 1[.

- (a) Justifier $f(\theta x + (1 \theta)y) \le \theta e^{c(1-\theta)(x-y)} f(x) + (1 \theta)e^{c\theta(y-x)} f(y)$.
- (b) Soit H la fonction définie pour c dans \mathbb{R}^+ par : $H(c) = \theta e^{c(1-\theta)(x-y)} f(x) + (1-\theta) e^{c\theta(y-x)} f(y)$.
 - i. Déterminer la limite de H(c) lorsque c tend vers $+\infty$.
 - ii. On admet que la fonction H est de classe C^1 sur $]0,+\infty[$ et un calcul élémentaire qu'on ne demande pas de faire montre que sa fonction derivée H' s'annule en un unique nombre réel c_0 en changeant de signe, le nombre c_0 vérifiant la relation :

$$e^{c_0(x-y)} = \frac{f(y)}{f(x)}.$$

Démontrer que $H(c_0) = f(x)^{\theta} f(y)^{(1-\theta)}$.

- iii. Etablir le tableau de variations de H. Que représente le point c_0 pour la fonction H?
- (c) Justifier que f est \ln -convexe.
- 22. Soient c et θ des nombres réels strictement positifs. On note $\varphi_{c,\theta}$ la fonction de la variable réelle x définie pour x dans $]0,+\infty[$ par :

$$\varphi_{c,\theta}(x) = \theta^{x-1} e^{-\theta} e^{cx}.$$

Démontrer que $\varphi_{c,\theta}$ est convexe sur l'intervalle $]0,+\infty[$.

23. En déduire que la fonction Γ est ln-convexe sur $]0,+\infty[$.

Partie VI

Soit g une fonction définie sur l'intervalle $]0, +\infty[$ et à valeurs dans $]0, +\infty[$ telle que :

- g est une fonction \ln -convexe
- $\forall x \in [0, +\infty), \ g(x+1) = xg(x),$
- -q(1)=1.

On pose $G = \ln g$.

- 24. Exprimer g(n) en fonction de l'entier naturel $n, n \ge 1$.
- 25. Soient x dans]0,1[et n dans $\mathbb{N} \setminus \{0,1\}$.

(a) Justifier les inégalités :

$$G(n) - G(n-1) \le \frac{G(x+n) - G(n)}{x} \le G(n+1) - G(n)$$
.

(b) En déduire que

$$(n-1)^x(n-1)! \le g(x+n) \le n^x(n-1)!$$

Soit n dans $\mathbb{N} \setminus \{0,1\}$ et soit x dans]0,1]. On pose :

$$u_n(x) = \frac{n^x(n-1)!}{x(x+1)(x+2)\cdots(x+n-1)}$$
.

Soit x dans]0,1[.

26. Démontrer pour un entier n > 2:

$$\left(\frac{n-1}{x+n-1}\right)u_{n-1}(x) \le g(x) \le u_n(x).$$

27. On se propose de démontrer que la suite $(u_n(x))_{n\in\mathbb{N}\setminus\{0,1\}}$ converge vers g(x) lorsque n tend vers $+\infty$.

- (a) Soit α dans $]0, +\infty[$. Justifier que $(1+\alpha)^x 1 \le \alpha x$.
- (b) Etudier le sens de variation de la suite $(u_n(x))_{n\in\mathbb{N}\setminus\{0,1\}}$.
- (c) Conclure.

28. En déduire que $g = \Gamma$.