Feuille d'exercices n°16

Exercice 1 (*)

Soit E un K-ev de dimension finie et $f \in \mathcal{L}(E)$. Montrer que les conditions suivantes sont équivalentes :

1. $E = Im f \oplus Ker f$

3. Im $f^2 = \text{Im } f$

2. E = Im f + Ker f

4. Ker $f^2 = \text{Ker } f$

Corrigé : On a $(1) \Rightarrow (2)$ clairement. Supposons (2). On a toujours $\operatorname{Im} f^2 \subset \operatorname{Im} f$. Soit $y \in \operatorname{Im} f$. Il existe $x \in \operatorname{E}$ tel que y = f(x). Et il existe $(a,b) \in \operatorname{E} \times \operatorname{Ker} f$ tel que x = f(a) + b d'où $y = f(x) = f(f(a) + b) = f^2(a) \in \operatorname{Im} f^2$. Ainsi, on a $\operatorname{Im} f = \operatorname{Im} f^2$ donc $(2) \Rightarrow (3)$. On a toujours $\operatorname{Ker} f \subset \operatorname{Ker} f^2$. D'après le théorème du rang et par égalité dimensionnelle, il vient $(3) \Rightarrow (4)$. Enfin, supposons (4). Soit $x \in \operatorname{Im} f \cap \operatorname{Ker} f$. Il existe $t \in \operatorname{E}$ tel que x = f(t) et $f^2(t) = f(x) = 0$ d'où $t \in \operatorname{Ker} f^2$. Or $\operatorname{Ker} f^2 = \operatorname{Ker} f$ d'où f(t) = 0 i.e. x = 0. Le théorème du rang fournit l'égalité dimensionnelle qui permet de conclure que $(4) \Rightarrow (1)$. Ainsi

Les quatre assertions sont équivalentes.

Exercice 2 (*)

Soient E, F des K-ev et f, g dans $\mathcal{L}(E,F)^2$ avec Im f et Im g de dimension finie. Montrer

$$\left|\operatorname{rg}(f) - \operatorname{rg}(g)\right| \leq \operatorname{rg}(f+g) \leq \operatorname{rg}(f) + \operatorname{rg}(g)$$

Corrigé: On a clairement

$$\operatorname{Im}(f+g) = \{f(x) + g(x), x \in E\} \subset \operatorname{Im} f + \operatorname{Im} g = \{f(x) + g(y), (x,y) \in E \times F\}$$

Passant aux dimensions, il vient

$$\operatorname{rg}(f+g) \leqslant \dim(\operatorname{Im} f + \operatorname{Im} g)$$

D'après la formule de Grassmann, on sait que

$$\dim (\operatorname{Im} f + \operatorname{Im} g) = \operatorname{rg}(f) + \operatorname{rg}(g) - \dim \operatorname{Im} f \cap \operatorname{Im} g \leqslant \operatorname{rg}(f) + \operatorname{rg}(g)$$

d'où

$$\boxed{\operatorname{rg}(f+g) \leqslant \operatorname{rg}(f) + \operatorname{rg}(g)}$$

Ensuite, avec l'inégalité précédemment établie, en remarquant $\operatorname{rg}(-g) = \operatorname{rg}(g)$, il vient

$$rg(f) = rg(f + g - g) \leqslant rg(f + g) + rg(-g) = rg(f + g) + rg(g)$$

d'où

$$\operatorname{rg}(f) - \operatorname{rg}(g) \leqslant \operatorname{rg}(f+g)$$

Par symétrie des rôles en f et g, on a également

$$\operatorname{rg}(g) - \operatorname{rg}(f) \leqslant \operatorname{rg}(f+g)$$

On conclut

$$\left| |\operatorname{rg}(f) - \operatorname{rg}(g)| \leqslant \operatorname{rg}(f+g) \leqslant \operatorname{rg}(f) + \operatorname{rg}(g) \right|$$

Exercice 3 (*)

Soit E un K-ev de dimension finie et $f \in \mathcal{L}(E)$. Montrer que

$$\dim \operatorname{Ker} f + \dim \operatorname{Ker} (f - \operatorname{id}) = \dim \operatorname{E} \iff f \operatorname{projecteur}$$

Corrigé: Le sens indirect est immédiat puisque si f est projecteur, on a

$$E = \operatorname{Im} f \oplus \operatorname{Ker} f$$

Réciproquement, on montre sans difficulté que

$$\mathbf{E} = \mathrm{Ker}\,(f - \mathrm{id}\,) \oplus \mathrm{Ker}\,\,f$$

Par suite, pour x=a+b avec $(a,b)\in \mathrm{Ker}\,(f-\mathrm{id})\times \mathrm{Ker}\,f,$ on a f(x)=a d'où f projecteur sur $\mathrm{Ker}\,(f-\mathrm{id})$ parallèlement à $\mathrm{Ker}\,f.$ Ainsi

$$\dim \operatorname{Ker} f + \dim \operatorname{Ker} (f - \operatorname{id}) = \dim \operatorname{E} \iff f \operatorname{projecteur}$$

Exercice 4 (*)

Soit $E = \mathcal{M}_n(\mathbb{K})$ avec n entier non nul. On pose

$$\forall M \in E$$
 $\varphi(M) = M - \frac{1}{n} Tr(M) I_n$

Justifier que $\varphi \in \mathcal{L}(E)$ puis calculer φ^2 et $Tr(\varphi)$.

Corrigé : L'application φ est à valeurs dans E, linéaire par linéarité de la trace et du produit.

On trouve $\varphi^2 = \varphi$

L'application φ est le projecteur sur Ker Tr parallèlement à Vect (I_n) . En considérant une base adaptée, on en déduit

$$\operatorname{Tr}(\varphi) = n^2 - 1$$

Exercice 5 (*)

Soit E un K-ev de dimension n et H_1, \ldots, H_p des hyperplans de E. Montrer

$$\dim \bigcap_{i=1}^{p} \mathbf{H}_{i} \geqslant n - p$$

Corrigé: Pour $k \in [1; p]$, il existe φ_k forme linéaire non nulle telle que $H_k = \text{Ker } \varphi_k$. On pose

$$\forall x \in E$$
 $\Phi(x) = (\varphi_1(x), \dots, \varphi_p(x))$

On a clairement $\Phi \in \mathcal{L}(E, \mathbb{K}^p)$ et Ker $\Phi = \bigcap_{i=1}^p \operatorname{Ker} \varphi_i = \bigcap_{i=1}^p \operatorname{H}_i$. Or, on a aussi Im Φ sev de \mathbb{K}^p d'où rg $(\Phi) \leq p$ et d'après le théorème du rang

$$\dim E = rg(\Phi) + \dim Ker \Phi$$

On conclut
$$\dim \bigcap_{i=1}^{p} \mathbf{H}_{i} = \dim \operatorname{Ker} \Phi = n - \operatorname{rg} (\Phi) \geqslant n - p$$

Exercice 6 (**)

Soit E un K-ev, $u \in \mathcal{L}(E)$ et p un projecteur de E. Montrer

$$u \circ p = p \circ u \iff u(\operatorname{Im} p) \subset \operatorname{Im} p \text{ et } u(\operatorname{Ker} p) \subset \operatorname{Ker} p$$

Corrigé: Supposons $u \circ p = p \circ u$. Pour $x \in E$, on a $u(p(x)) = p(u(x)) \in \text{Im } p$ ce qui prouve $u(\text{Im } p) \subset \text{Im } p$ et pour $x \in \text{Ker } p$, on a $p(u(x)) = u(p(x)) = 0_E$ d'où $u(\text{Ker } p) \subset \text{Ker } p$. Réciproquement, soit $x \in E$. On décompose x = a + b avec $(a, b) \in \text{Im } p \times \text{Ker } p$. Sachant Im p = Ker id -p, on a p(a) = a et par stabilité, on a $u(a) \in \text{Im } p$ et $u(b) \in \text{Ker } p$. Ainsi

$$u \circ p(x) = u(p(a)) = u(a)$$
 et $p \circ u(x) = p(u(a)) = u(a)$

On conclut

$$u \circ p = p \circ u \iff u(\operatorname{Im} p) \subset \operatorname{Im} p \text{ et } u(\operatorname{Ker} p) \subset \operatorname{Ker} p$$

Exercice 7 (*)

Soit E un K-ev de dimension fini n et F un sev de E avec dim F = r. On note

$$\Lambda = \{ u \in \mathcal{L}(E) \mid u(F) \subset F \}$$

Vérifier que Λ est un sev de $\mathcal{L}(E)$ puis déterminer dim Λ .

Corrigé : L'ensemble Λ est clairement un sev de $\mathscr{L}(E)$. Soit \mathscr{B}_F base de F complétée en \mathscr{B} base de E. On a

$$u \in \Lambda \iff \operatorname{mat}_{\mathscr{B}} u = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array}\right)$$

avec $A \in \mathscr{M}_r(\mathbb{K})$, $B \in \mathscr{M}_{r,n-r}(\mathbb{K})$ et $C \in \mathscr{M}_{n-r}(\mathbb{K})$. L'application $u \mapsto \operatorname{mat}_{\mathscr{B}} u$ réalisant un isomorphisme, la dimension de Λ est la dimension de l'ensemble des matrices de la forme souhaitée et on conclut

$$\boxed{\dim \Lambda = r^2 + (n-r)r + (n-r)^2}$$

Exercice 8 (**)

Soit E un K-ev de dimension n entier non nul et $\varphi_1, \ldots, \varphi_n$ des formes linéaires sur E telles que

$$\Phi: \begin{cases} \mathbf{E} \to \mathbb{K}^n \\ x \mapsto (\varphi_1(x), \dots, \varphi_n(x)) \end{cases}$$

est un isomorphisme. On pose $F_i = \bigcap_{k \in [\![1 \, ; \, n \,]\!] \smallsetminus \{i\}} \mathrm{Ker} \ \varphi_k$ pour $i \in [\![1 \, ; \, n \,]\!]$.

- 1. Justifier que pour tout $k \in [1; n]$, φ_k est une forme linéaire non nulle.
- 2. Montrer que

$$\sum_{k=1}^{n} \mathbf{F}_k = \bigoplus_{k=1}^{n} \mathbf{F}_k$$

3. Établir

$$\bigoplus_{k=1}^{n} \mathcal{F}_k = \mathcal{E}$$

Corrigé: 1. Notons $\mathscr{C} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n . Comme Φ est un isomorphisme, on a $\forall k \in [1; n]$ $\exists ! x_k \in E \mid \Phi(x_k) = e_k$

En particulier

$$\forall k \in [1; n] \qquad \varphi_k(x_k) = 1$$

Ainsi

Pour tout $k \in [1; n]$, φ_k est une forme linéaire non nulle.

2. Soit
$$(x_i)_{i \in \llbracket 1; n \rrbracket} \in \prod_{i=1}^n \mathcal{F}_i$$
 tel que $\sum_{i=1}^n x_i = 0_{\mathcal{E}}$. Pour $i \in \llbracket 1; n \rrbracket$, comme $x_i \in \mathcal{F}_i$, on a

$$\forall (i,k) \in [1; n]^2 \text{ avec } i \neq k \qquad \varphi_k(x_i) = 0$$

Soit
$$k \in [1; n]$$
. Il vient

$$\varphi_k\left(\sum_{i=1}^n x_i\right) = \sum_{i=1}^n \varphi_k(x_i) = \varphi_k(x_k) = 0$$

Ainsi

$$\forall i \in [1; n] \qquad \varphi_i(x_k) = 0$$

ce qui équivaut à

$$x_k \in \bigcap_{i \in [1; n]} \operatorname{Ker} \varphi_i = \operatorname{Ker} \Phi = \{0_{\mathcal{E}}\}$$

puisque Φ est injectif (car bijectif). On a donc montré la nullité des x_k ce qui prouve

$$\sum_{k=1}^{n} \mathbf{F}_k = \bigoplus_{k=1}^{n} \mathbf{F}_k$$

3. Soit $k \in [1; n]$. Le sev F_k est une intersection de n-1 noyaux de formes linéaires non nulles autrement dit c'est une intersection de n-1 hyperplans d'où

$$\dim F_k \geqslant n - (n - 1) = 1$$

Par suite

$$\dim \bigoplus_{k=1}^{n} F_k = \sum_{k=1}^{n} \dim F_k \geqslant \sum_{k=1}^{n} 1 = n$$

et donc

$$\begin{cases} \bigoplus_{k=1}^n \mathcal{F}_k \subset \mathcal{E} \\ n \leqslant \dim \bigoplus_{k=1}^n \mathcal{F}_k \leqslant \dim \mathcal{E} = n \end{cases}$$

Il en résulte

$$\bigoplus_{k=1}^{n} \mathcal{F}_k = \mathcal{E}$$

Exercice 9 (**)

Soit $M \in \mathcal{M}_n(\mathbb{K})$ avec rg(M) = 1. Déterminer une expression simple de M^2 en fonction de M.

Corrigé : Comme rg M=1, il existe des matrices colonnes non nulles X et Y telles que $M=XY^{\top}$. Par suite, avec l'associativité du produit matriciel, il vient

$$M^2 = (XY^\top)(XY^\top) = X \underbrace{(Y^\top X)}_{\in \mathbb{K}} Y^\top = (Y^\top X)M$$

Or, d'après la propriété fondamentale de la trace, on a

$$\operatorname{Tr}(M) = \operatorname{Tr}(XY^{\top}) = \operatorname{Tr}(Y^{\top}X) = Y^{\top}X$$

Ainsi

$$M^2 = Tr(M)M$$

Exercice 10 (*)

Soient α , β dans \mathbb{K} et $A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ et $B = \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix}$. Déterminer une condition nécessaire et suffisante pour avoir A semblable à B.

Corrigé : Supposons A et B semblables. Alors, les matrices ont même trace et même déterminant d'où

$$\begin{cases} \alpha + \beta = 0 \\ \alpha \beta = -\alpha \beta \end{cases}$$

et par conséquent $\alpha = \beta = 0$. La réciproque est immédiate et on conclut

Les matrices
$$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$
 et $\begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix}$ sont semblables si et seulement si $\alpha = \beta = 0$.

Remarque: On peut aussi invoquer l'égalité $\chi_A = \chi_B$, ou aussi A^2 semblable à B^2 ...

Exercice 11 (**)

Soit n entier et $P_k = X^k (1 - X)^{n-k}$ pour $k \in [0; n]$. Montrer que $\mathscr{B} = (P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$. Déterminer les coordonnées de la base canonique $\mathscr{C} = (X^k)_{0 \le k \le n}$ dans la base \mathscr{B} .

Corrigé: Les polynômes P_k sont échelonnées en valuation et forme donc une famille libre de n+1 vecteurs dans un espace de dimension n+1 ce qui prouve que \mathscr{B} est une base de $\mathbb{R}_n[X]$. Puis, pour $j \in [0; n]$, on a

$$X^{j} = X^{j}(1 - X + X)^{n-j} = X^{j} \sum_{k=0}^{n-j} {n-j \choose k} (1 - X)^{k} X^{n-j-k} = \sum_{k=0}^{n-j} {n-j \choose k} (1 - X)^{k} X^{n-k}$$

Ainsi La famille \mathscr{B} est une base de $\mathbb{R}_n[X]$ et on a $X^j = \sum_{k=0}^{n-j} \binom{n-j}{k} P_{n-k}$ pour $j \in [0; n]$.

Remarque : On peut aussi observer que la famille \mathscr{B} est génératrice de cardinal égal à dim $\mathbb{R}_n[X]$ pour conclure qu'il s'agit d'une base.

Exercice 12 (**)

Soient A, B dans $\mathcal{M}_n(\mathbb{R})$ semblables sur \mathbb{C} . Montrer que A et B sont semblables sur \mathbb{R} .

Corrigé : Soit $P \in GL_n(\mathbb{C})$ telle que $A = PBP^{-1}$ ce qui équivaut à AP = PB. Notons $P_1 = Re$ P et $P_2 = Im P$. Ainsi, on a $AP_1 = P_1B$ et $AP_2 = P_2B$. On pose

$$\forall t \in \mathbb{C}$$
 $\varphi(t) = \det(P_1 + tP_2)$

On a φ polynomiale en t et $\varphi(i) = \det(P_1 + iP_2) = \det P \neq 0$. Par suite, il existe α réel tel que $\varphi(\alpha) \neq 0$ (sinon, φ aurait une infinité de racines et serait dont le polynôme nul). Il s'ensuit

$$A(P_1 + \alpha P_2) = (P_1 + \alpha P_2)B \quad \text{et} \quad \det(P_1 + iP_2) \neq 0$$

On conclut A et B sont semblables sur \mathbb{R} .

Exercice 13 (**)

Soit E un K-ev de dimension finie et $f \in \mathcal{L}(E)$. On note

$$\forall k \in \mathbb{N}$$
 $N_k = \text{Ker } f^k$ $I_k = \text{Im } f^k$

- 1. Montrer que les suites $(I_k)_k$ et $(N_k)_k$ sont respectivement décroissante et qu'elles sont simultanément stationnaires.
- 2. On note r le rang à partir duquel les suites stationnent. Montrer $E = I_r \oplus N_r$.
- 3. En déduire que toute matrice de $\mathcal{M}_n(\mathbb{K})$ est semblable à une matrice de la forme $\begin{pmatrix} C & 0 \\ \hline 0 & N \end{pmatrix}$ où C une matrice carrée inversible et N est une matrice carré nilpotente.

Corrigé : 1. Soit $k \in \mathbb{N}$ et $x \in E$. On a

$$f^{k}(x) = 0_{E} \implies f(f^{k}(x)) = f^{k+1}(x) = 0_{E} \text{ et } y = f^{k+1}(x) \implies y = f^{k}(f(x))$$

D'où
$$\operatorname{Ker} f^{k} \subset \operatorname{Ker} f^{k+1} \text{ et } \operatorname{Im} f^{k}$$

Ainsi La suite $(N_k)_k$ croît et la suite $(I_k)_k$ décroît.

Il s'ensuit que les suite $(\dim N_k)_k$ et $(\dim I_k)_k$ sont respectivement croissantes et décroissantes. Comme $(\dim I_k)_k$ est décroissante à valeurs dans \mathbb{N} , elle est stationnaire à partir d'un certain rang et d'après le théorème du rang, la suite $(\dim N_k)_k$ est stationnaire à partir du même rang. Par inclusion et égalité des dimensions, on conclut

Les suites
$$(I_k)_k$$
 et $(N_k)_k$ sont simultanément stationnaires.

Remarque: On peut établir un résultat plus précis : la stricte monotonie de ces suites avant la stationnarité. En effet, supposons qu'il existe $\ell < r$ tel que $N_{\ell} = N_{\ell+1}$. On établit alors par récurrence $N_k = N_{k+1}$ pour tout $k \ge \ell$. En effet, soit $x \in N_{k+2}$, alors $f(x) \in N_{k+1} = N_k$ d'où $x \in N_{k+1}$. On en déduit que la suite $(N_k)_k$ stationne à partir de ℓ avec $\ell < r$ ce qui est absurde.

2. Soit $x \in I_r \cap N_r$. On a

$$f^r(x) = 0_E$$
 et $x = f^r(t)$ avec $t \in E$

Par suite, on a $f^r(x) = f^{2r}(t) = 0_E$ d'où $t \in N_{2r}$. Or la suite $(N_k)_k$ stationne à partir de r d'où $N_{2r} = N_r$ et par conséquent $t \in N_r$ et donc $x = f^r(t) = 0_E$. Le théorème du rang donne

$$\dim I_r + \dim N_r = \dim E$$

On conclut

$$\boxed{\mathrm{E} = \mathrm{I}_r \oplus \mathrm{N}_r}$$

3. Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $f \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé à A. Si la matrice A est inversible, le résultat est immédiat avec une matrice N vide. On suppose A non inversible d'où $r \geqslant 1$. Les sous-espaces I_r et N_r sont clairement stables par f. Notant $\mathcal{B} = \mathcal{B}_I \uplus \mathcal{B}_N$ une base adaptée à la somme directe $E = I_r \oplus N_r$, on en déduit la forme diagonale par blocs de $\mathrm{mat}_{\mathcal{B}} f$. Notons respectivement f_{I_r} et f_{N_r} les endomorphismes induits par f respectivement sur I_r et N_r . On a clairement $(f_{N_r})^r = 0$ d'où $N = \mathrm{mat}_{\mathcal{B}_N} f_{N_r}$ matrice nilpotente. Puis

$$Ker f_{I_r} = N_1 \cap I_r \subset N_r \cap I_r = \{0_E\}$$

D'où f_{I_r} injectif et donc bijectif. On peut aussi rédiger $f_{I_r}(I_r) = I_r$ par stationnarité d'où la surjectivité et donc la bijectivité. Ainsi, la matrice $C = \max_{\mathscr{B}_I} f_{I_r}$ est inversible et comme A et $\max_{\mathscr{B}} f$ sont les matrices d'un même endomorphisme dans des bases éventuellement distinctes, on conclut

A semblable à
$$\left(\begin{array}{c|c} C & 0 \\ \hline 0 & N \end{array} \right)$$
 avec C inversible et N nilpotente

Exercice 14 (**)

Soient $p, q \in \mathcal{L}(E)$. Montrer

$$p \circ q = p$$
 et $q \circ p = q \iff p, q$ projecteurs et Ker $p = \operatorname{Ker} q$

Corrigé : Supposons $p \circ q = p$ et $q \circ p = q$. Puis, par associativité, il vient $p^2 = (p \circ q) \circ p = p \circ (q \circ p) = p \circ q = p$ d'où p projecteur et

$$x \in \operatorname{Ker} p \implies p(x) = 0_{\operatorname{E}} \implies (q \circ p)(x) = 0_{e} \implies q(x) = 0_{\operatorname{E}}$$

autrement dit Ker $p \subset \text{Ker } q$ et par symétrie des rôles, on a l'autre inclusion d'où le sens direct. Réciproquement, soit $x \in E$. On a (id -q) $(x) \in \text{Ker } q = \text{Ker } p$ d'où

$$p(x) = p(q(x)) + q((id - q)(x)) = (p \circ q)(x)$$

et de même pour l'autre égalité par symétrie des rôles. On conclut

$$p \circ q = p$$
 et $q \circ p = q \iff p, q$ projecteurs et Ker $p = \text{Ker } q$