Feuille d'exercices n°17

Exercice 1 (**)

Soit E un K-ev de dimension n (non nul) et $u \in \mathcal{L}(E)$ avec $\operatorname{rg}(u) \leqslant r \leqslant n-1$. Montrer que u est composé d'endomorphismes de rang r.

Corrigé: Notons $s = \operatorname{rg}(u)$. Si s = r, le résultat est trivial. Supposons $0 \le s < r$. Soit \mathscr{B} une base de E et $A = \operatorname{mat}_{\mathscr{B}} u$. On dispose de P, Q dans $\operatorname{GL}_n(\mathbb{K})$ telles que

$$A = PJ_sQ$$
 avec $J_s = \sum_{i=1}^{s} E_{i,i}$

Posons

$$\forall \ell \in [\![s+1 \, ; \, r+1 \,]\!] \qquad \mathrm{K}_{\ell} = \mathrm{J}_{s} + \sum_{i \in [\![s+1 \, ; \, r+1 \,]\!] \setminus \{\ell\}} \mathrm{E}_{i,i}$$

Par construction, on a

$$\forall \ell \in [s+1; r+1]$$
 rg $K_{\ell} = r$ et $\prod_{\ell=s+1}^{r+1} K_{\ell} = J_s$

Le produit contient au moins deux termes puisque s < r par hypothèse. Par suite

$$A = P\left(\prod_{\ell=s+1}^{r+1} K_{\ell}\right) Q = PK_{s+1}\left(\prod_{s+1 < \ell < r+1} K_{\ell}\right) K_{r+1}Q$$

$$_{
m et}$$

En considérant les endomorphismes dont les matrices dans \mathscr{B} sont respectivement PK_{s+1} , K_{ℓ} avec $s+1<\ell< r+1$ et $K_{r+1}Q$, on conclut

L'endomorphisme u est composé d'endomorphismes de rang r.

Exercice 2 (**)

Soit $E = \mathbb{R}_n[X]$ avec n entier non nul. Pour $P \in E$, on pose $\varphi(P) = X(X - 1)P' - nXP$.

- 1. Montrer que $\varphi \in \mathcal{L}(E)$. Préciser $\max_{\mathscr{C}} \varphi$ où \mathscr{C} désigne la base canonique de E.
- 2. Déterminer des bases de Ker φ et Im φ .

Corrigé : 1. L'application φ est linéaire par linéarité du produit à gauche et de la dérivation. On a

$$\varphi(1) = -nX \in E$$

et
$$\forall k \in \llbracket 1 ; n \rrbracket \qquad \varphi(\mathbf{X}^k) = (k-n)\mathbf{X}^{k+1} - k\mathbf{X}^k$$

d'où $\varphi(X^k) \in E$ pour tout $k \in [0; n]$, y compris le cas k = n puisque le coefficient devant le terme en X^{n+1} s'annule. Par caractérisation d'une application linéaire sur une base, on conclut

$$\varphi \in \mathscr{L}(\mathbf{E})$$

Et on a

$$\operatorname{mat}_{\mathscr{C}}\varphi = \begin{pmatrix} 0 & 0 & \dots & 0 \\ -n & -1 & \ddots & \vdots \\ 0 & -(n-1) & -2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & -1 & -n \end{pmatrix}$$

2. On a $P \in \text{Ker } \varphi \iff X[(X-1)P'-nP] = 0 \iff (X-1)P'-nP = 0$

Résolvons l'équation différentielle associée sur $]1;+\infty[$ et cherchons des solutions polynomiales :

$$(t-1)x'(t) - nx(t) = 0 \iff x \in \text{Vect}(t \mapsto (t-1)^n)$$

D'où

$$\boxed{\text{Ker } \varphi = \text{Vect } ((X-1)^n)}$$

Puis, la famille $(\varphi(\mathbf{X}^k))_{k \in \llbracket 0\,;\, n \rrbracket}$ est génératrice de Im φ . D'après le théorème du rang, on cherche à extraire une famille libre de cardinal n de la famille génératrice précédente. Le caractère échelonnée montre que les familles $(\varphi(\mathbf{X}^k))_{k \in \llbracket 0\,;\, n-1 \rrbracket}$ et $(\varphi(\mathbf{X}^k))_{k \in \llbracket 1\,;\, n \rrbracket}$ font l'affaire mais on peut fournir une base plus simple encore. Par lecture matricielle, on observe

$$\forall k \in [0; n] \qquad \varphi(X^k) \in \text{Vect}(X, \dots, X^n)$$

d'où

Im
$$\varphi \subset \text{Vect}(X, \dots, X^n)$$

Par égalité des dimensions, on conclut

La famille
$$(X, \ldots, X^n)$$
 est une base de Im φ .

Exercice 3 (***)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant $A^{n-1} \neq 0$ et $A^n = 0$. Montrer que A est semblable à B avec

$$B = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \dots & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$$

Corrigé : Supposons le problème résolu. Notant $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé à A, il existe une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ de E telle que $u(\varepsilon_i) = \varepsilon_{i-1}$ pour $i \in [\![2 \, ; \, n]\!]$ et $u(\varepsilon_1) = 0$, autrement dit $\varepsilon_i = u^{n-i}(\varepsilon_n)$ pour tout $i \in [\![1 \, ; \, n]\!]$. Il suffit alors de choisir $x \in E$ tel que $u^{n-1}(x) \neq 0$. La famille $(u^{n-1}(x), \dots, x)$ est libre. En effet, soit $(\alpha_i)_{0 \leqslant i \leqslant n-1}$ une famille de scalaires tels que $\sum_{k=0}^{n-1} \alpha_k u^k(x) = 0_E$. On suppose les α_k non tous nuls et on pose $p = \min\{k \in [\![0 \, ; \, n-1 \,]\!] \mid \alpha_k \neq 0\}$. On a

$$u^{n-p-1}\left(\sum_{k=0}^{n-1}\alpha_k u^k(x)\right) = \alpha_p u^{n-1}(x) + 0_{\mathcal{E}} = 0 \quad \Longrightarrow \quad \alpha_p = 0$$

ce qui est en contradiction avec le choix de p. Enfin, dans cette base, la matrice $\mathrm{mat}_{\mathscr{B}}u$ a la forme souhaitée.

Les matrices A et B sont semblables.

Exercice 4 (***)

Soit E un K-ev de dimension finie, $(\varphi_1, \ldots, \varphi_n)$ (n entier non nul) une base de $\mathscr{L}(E, K)$ et on pose

$$\Phi: \begin{cases} \mathbf{E} \to \mathbb{K}^n \\ x \mapsto (\varphi_1(x), \dots, \varphi_n(x)) \end{cases}$$

- 1. Préciser dim E.
- 2. Justifier que Φ est un isomorphisme.
- 3. En déduire l'existence d'une base $\mathscr{B} = (\varepsilon_1, \dots, \varepsilon_n)$ de E telle que

$$\forall (i,j) \in [1; n]^2 \qquad \varphi_i(\varepsilon_j) = \delta_{i,j}$$

Corrigé: 1. On a dim $\mathscr{L}(E, \mathbb{K}) = \dim E \times \dim \mathbb{K} = \dim E$ puisque \mathbb{K} est un \mathbb{K} -ev de dimension 1. Comme $\mathscr{L}(E, \mathbb{K})$ admet une base de cardinal n, il s'ensuit

$$\dim \mathbf{E} = n$$

2. Soit $x \in \text{Ker } \Phi \setminus \{0_E\}$. Il existe $\varphi \in \mathcal{L}(E, \mathbb{K})$ tel que $\varphi(x) \neq 0$. Or, il existe des scalaires α_i tels que $\varphi = \sum_{i=1}^n \alpha_i \varphi_i$ et $\varphi(x) \neq 0$ est alors absurde. On conclut que Ker $\Phi = \{0_E\}$ d'où l'injectivité et donc la bijectivité pour raison de dimension. Ainsi

L'application
$$\Phi$$
 est un isomorphisme de E sur \mathbb{K}^n .

3. Soit $\mathscr{C} = (e_1, \ldots, e_n)$ la base canonique de \mathbb{K}^n et on pose

$$\forall i \in [1; n]$$
 $\varepsilon_i = \Phi^{-1}(e_i)$

Par construction, on a exactement

$$\forall (i,j) \in [1; n]^2 \qquad \varphi_i(\varepsilon_j) = \delta_{i,j}$$

Remarque: La base \mathscr{B} ainsi construite s'appelle la base ant'eduale de la base $(\varphi_1, \ldots, \varphi_n)$ de $\mathscr{L}(E, \mathbb{K})$.

Exercice 5 (**)

Soit E un K-ev de dimension n entier non nul et $u \in \mathcal{L}(E)$. On suppose qu'il existe $x_0 \in E$ tel que $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ base de E. On pose

$$\mathscr{C}(u) = \{ v \in \mathscr{L}(\mathbf{E}) \mid v \circ u = u \circ v \}$$

- 1. Montrer que $\mathscr{C}(u)$ est une sous-algèbre de $\mathscr{L}(E)$.
- 2. Montrer

$$\mathscr{C}(u) = \mathbb{K}_{n-1}[u]$$

3. Déterminer dim $\mathscr{C}(u)$.

Corrigé : 1. On vérifie sans difficulté que id $\in \mathscr{C}(u)$, $\mathscr{C}(u)$ sev de $\mathscr{L}(E)$ et $v \circ w \in \mathscr{C}(u)$ pour v, w dans $\mathscr{C}(u)$. Ainsi

L'ensemble
$$\mathscr{C}(u)$$
 est une sous-algèbre de $\mathscr{L}(\mathsf{E}).$

2. On a clairement $\mathbb{K}_{n-1}[u] \subset \mathscr{C}(u)$. Réciproquement, soit $v \in \mathscr{C}(u)$. Le vecteur $v(x_0)$ se décompose dans la base $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ en

$$v(x_0) = \sum_{k=0}^{n-1} a_k u^k(x_0)$$
 avec $(a_0, \dots, a_{n-1}) \in \mathbb{K}^n$

Soit $i \in \llbracket \, 0 \, ; \, n-1 \, \rrbracket$. Comme v commute avec u, alors v commute avec u^i pour tout $i \in \llbracket \, 0 \, ; \, n-1 \, \rrbracket$ puis

$$v(u^{i}(x_{0})) = u^{i} \circ v(x_{0}) = u^{i} \left(\sum_{k=0}^{n-1} a_{k} u^{k}(x_{0}) \right)$$
$$= u^{i} \circ \left(\sum_{k=0}^{n-1} a_{k} u^{k} \right) (x_{0}) = \left(\sum_{k=0}^{n-1} a_{k} u^{k} \right) (u^{i}(x_{0}))$$

Ainsi, les endomorphismes v et $\sum_{k=0}^{n-1} a_k u^k$ coïncident sur la base $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ et sont donc égaux ce qui prouve l'inclusion directe. On conclut

$$\mathcal{C}(u) = \left\{ \sum_{k=0}^{n-1} a_k u^k, \ (a_i)_{i \in \llbracket 0; n-1 \rrbracket} \in \mathbb{K}^n \right\}$$

Variante: Soit $x \in E$. Il existe $(b_k)_{0 \le k \le n-1} \in \mathbb{K}^n$ tel que $x = \sum_{k=0}^{n-1} b_k u^k(x_0)$. Ainsi

$$v(x) = v\left(\sum_{k=0}^{n-1} b_k u^k(x_0)\right) = \sum_{k=0}^{n-1} b_k v \circ u^k(x_0) = \sum_{k=0}^{n-1} b_k u^k \circ v(x_0)$$
$$= \sum_{k=0}^{n-1} b_k u^k \left(\sum_{\ell=0}^{n-1} a_\ell u^\ell(x_0)\right) = \sum_{0 \le k, \ell \le n-1} a_\ell b_k u^{k+\ell}(x_0) = \sum_{\ell=0}^{n-1} a_\ell u^\ell(x)$$

3. D'après ce qui précède, la famille $(u^k)_{k \in [0; n-1]}$ est génératrice de $\mathscr{C}(u)$. Montrons sa liberté. Soit $(a_k)_{k \in [0; n-1]} \in \mathbb{K}^n$ tel que $\sum_{k=0}^{n-1} a_k u^{k-1} = 0$. En particulier, en évaluant en x_0 , il vient $\sum_{k=0}^{n-1} a_k u^k(x_0) = 0$. Or la famille $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est une base de E donc libre et par suite

$$\sum_{k=0}^{n-1} a_k u^k(x_0) = 0 \quad \Longrightarrow \quad \forall k \in \llbracket 0 \, ; \, n-1 \rrbracket \qquad a_k = 0$$

Ainsi, la famille $(u^k)_{k\in [0; n-1]}$ est libre et génératrice de $\mathscr{C}(u)$ donc est une base de $\mathscr{C}(u)$. Son cardinal étant égal à n, on conclut

$$\dim \mathscr{C}(u) = n$$

Exercice 6 (***)

Soit $E = \mathcal{M}_n(\mathbb{R})$ avec n entier non nul, $A \in E$. Résoudre en l'inconnue $X \in E$ l'équation

$$X + X^{\top} = \operatorname{Tr}(X)A \tag{L}$$

Corrigé : Soit X solution de (L). On a

$$X + X^{\top} = \operatorname{Tr}(X)A \implies \operatorname{Tr}(X + X^{\top}) = \operatorname{Tr}(X) \times \operatorname{Tr}(A) \implies \operatorname{Tr}(X)(2 - \operatorname{Tr}(A)) = 0$$

- Si Tr (X) = 0, alors $X + X^{\top} = 0$ d'où $X \in \mathscr{A}_n(\mathbb{R})$ et réciproquement, une matrice antisymétrique est solution de (E).
- Si $Tr(X) \neq 0$, alors Tr(A) = 2. On pose

$$\forall X \in E$$
 $\varphi(X) = \frac{1}{2}(X + X^{\top})$

Par analyse/synthèse, on a la décomposition de $X \in E$ dans la somme directe $\mathscr{S}_n(\mathbb{R}) \oplus \mathscr{A}_n(\mathbb{R})$ donnée par

$$X = \underbrace{\frac{1}{2}(X + X^{\top})}_{\in \mathscr{S}_n(\mathbb{R})} + \underbrace{\frac{1}{2}(X - X^{\top})}_{\in \mathscr{A}_n(\mathbb{R})}$$

Il s'ensuit que φ est le projecteur sur $\mathscr{S}_n(\mathbb{R})$ parallèlement à $\mathscr{A}_n(\mathbb{R})$. On a

$$X + X^{\top} = Tr(X)A \iff \varphi(X) = \frac{Tr(X)}{2}A$$

Comme $\operatorname{Tr}(X) \neq 0$, on a $A \in \operatorname{Im} \varphi = \mathscr{S}_n(\mathbb{R})$ et d'après les propriétés d'un projecteur,

$$\varphi\left(\frac{\operatorname{Tr}(X)}{2}A\right) = \frac{\operatorname{Tr}(X)}{2}A$$

Il s'ensuit

$$\varphi(X) = \frac{\operatorname{Tr}(X)}{2}A \iff X - \frac{\operatorname{Tr}(X)}{2}A \in \operatorname{Ker} \varphi = \mathscr{A}_n(\mathbb{R})$$

D'où

$$X = \lambda A + B$$
 avec $(\lambda, B) \in \mathbb{R} \times \mathscr{A}_n(\mathbb{R})$

Réciproquement, on a

$$\forall (\lambda, B) \in \mathbb{R} \times \mathscr{A}_n(\mathbb{R}) \qquad \varphi(\lambda A + B) = \lambda A = \frac{\operatorname{Tr}(\lambda A + B)}{2} A$$

Notant S_E l'ensemble des solutions de E, on conclut

Si Tr (A)
$$\neq$$
 2 ou A $\notin \mathscr{S}_n(\mathbb{R})$, alors $S_L = \mathscr{A}_n(\mathbb{R})$ et sinon $S_L = \{\lambda A + B, B \in \mathscr{A}_n(\mathbb{R})\}$.

Exercice 7 (**)

Soit $E = \mathcal{M}_n(\mathbb{K})$ avec n entier non nul et $(A, B) \in E^2$. On pose

$$\forall M \in E$$
 $\Phi(M) = AM - MB$

- 1. Vérifier que $\Phi \in \mathcal{L}(E)$.
- 2. Montrer $\forall (M, p) \in E \times \mathbb{N}$ $\Phi^p(M) = \sum_{k=0}^p \binom{p}{k} (-1)^k A^{p-k} M B^k$
- 3. Montrer que si A et B sont nilpotentes, alors Φ l'est aussi.

Corrigé : 1. L'application Φ est valeurs dans E par définition des opérations matricielles et par linéarité du produit à gauche et à droite et de la somme, on conclut

$$\Phi \in \mathscr{L}(E)$$

2. On pose f(M) = AM et g(M) = MB pour tout $M \in E$. Les applications f et g sont également des endomorphismes de E et on observe

$$\forall M \in E$$
 $f \circ g(M) = AMB = g \circ f(M)$

autrement dit f et g commutent. D'après la formule du binôme, on a

$$\Phi^p = (f - g)^p = \sum_{k=0}^k {p \choose k} (-1)^k f^{p-k} \circ g^k$$

Ainsi

$$\forall (M, p) \in E \times \mathbb{N}$$
 $\Phi^p(M) = \sum_{k=0}^p \binom{p}{k} (-1)^k A^{p-k} M B^k$

3. Si $A^p=0$ et $B^q=0$, alors pour $k\in [0\,;\, p+q\,]$, on a $k\geqslant p$ ou $p+q-k\geqslant q$ d'où $\Phi^{p+q}=0$. On conclut

Si A et B sont nilpotentes, alors Φ l'est aussi.

Exercice 8 (***)

- 1. Soit E un K-ev et $f \in \mathcal{L}(E)$ tel que (x, f(x)) est liée pour tout $x \in E$. Montrer que f est une homothétie.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{K})$ de trace nulle. Montrer que A est semblable une matrice de diagonale nulle.

Corrigé: 1. Considérons $x \neq 0_E$. On a (x, f(x)) liée d'où l'existence d'un scalaire λ_x tel que $f(x) = \lambda_x x$. Soit $y \in E$ tel que (x, y) libre. On a $y \neq 0_E$ et $x + y \neq 0_E$ par liberté et aussi

$$f(x+y) = \lambda_{x+y}(x+y) = \lambda_x x + \lambda_y y \implies \lambda_{x+y} = \lambda_x = \lambda_y$$

Soit $y \in E$ non nul colinéaire à x. On a $y = \alpha x$ avec α scalaire non nul et

$$f(y) = \lambda_y \alpha x = f(\alpha x) = \alpha f(x) = \alpha \lambda_x x \implies \lambda_y = \lambda_x$$

Ainsi, le scalaire λ_x ne dépend pas du choix de x non nul et pour $x=0_{\rm E}$, le résultat vaut aussi d'où

$$f \in \text{Vect (id)}$$

2. On procède par récurrence en supposant le résultat vrai pour une matrice de $\mathcal{M}_{n-1}(\mathbb{K})$ avec $n \geq 2$. Si A est nulle, le résultat est trivial. On suppose $A \neq 0$. Soit $f \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé à A. On a $f \notin \text{Vect}(\text{id})$. Sinon, on aurait $\text{Tr}(f) = n\lambda = 0$ d'où $\lambda = 0$ donc f = 0 ce qui est exclu. D'après ce qui précède, il existe $x \in E$ non nul tel que (x, f(x)) libre. En complétant en \mathcal{B} une base de E, on a

$$M = \text{mat}_{\mathscr{B}} f = \begin{pmatrix} 0 & L \\ \hline U & A' \end{pmatrix} \text{ avec } U = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

et $\operatorname{Tr}(f) = \operatorname{Tr}(A') = 0$ avec $A' \in \mathscr{M}_{n-1}(\mathbb{K})$. Par hypothèse de récurrence, A' est semblable à une matrice $B \in \mathscr{M}_{n-1}(\mathbb{K})$ de trace nulle. Donc, il existe $P \in \operatorname{GL}_{n-1}(\mathbb{K})$ tel que $B = \operatorname{PA'P^{-1}}$. Posant $Q = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & P \end{array}\right)$, on a Q inversible avec $Q^{-1} = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & P^{-1} \end{array}\right)$ et un produit par blocs donne

$$\mathrm{QMQ^{-1}} = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & P \end{array}\right) \left(\begin{array}{c|c} 0 & L \\ \hline U & A' \end{array}\right) \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & P^{-1} \end{array}\right) = \left(\begin{array}{c|c} 0 & LP^{-1} \\ \hline \mathrm{PU} & \mathrm{PA'P^{-1}} \end{array}\right) = \left(\begin{array}{c|c} 0 & LP^{-1} \\ \hline \mathrm{PU} & B \end{array}\right)$$

qui est de diagonale nulle ce qui clôt la récurrence. Ainsi

Une matrice de trace nulle est semblable à une matrice de diagonale nulle.

Exercice 9 (**)

Soit E un K-ev de dimension n et $u_1, \ldots u_n$ des endomorphismes nilpotents de E qui commutent deux à deux. Que vaut $u_1 \circ \ldots \circ u_n$?

Corrigé : On procède par récurrence forte sur $n = \dim E$. L'initialisation pour n = 1 est immédiate. Supposons le résultat vrai jusqu'à n entier non nul fixé. Soit E un \mathbb{K} -ev de dimension n+1 et u_1,\ldots,u_{n+1} des endomorphismes nilpotents commutant deux à deux. Le sev $\operatorname{Im} u_{n+1}$ est stable par $u_1,\ldots u_n$ et notant v_i l'endomorphisme induit par u_i sur $\operatorname{Im} u_{n+1}$, on vérifie sans difficulté que les v_i sont nilpotents, commutent et que $u_1 \circ \ldots \circ u_n$ induit $v_1 \circ \ldots \circ v_n$ sur $\operatorname{Im} u_{n+1}$. Or, on a dim $\operatorname{Ker} u_{n+1} \geqslant 1$ par nilpotence de u_{n+1} d'où rg $u_{n+1} \leqslant n$ d'après le théorème du rang.

Notant $r = \operatorname{rg} u_{n+1}$, on a par hypothèse de récurrence $v_1 \circ \ldots \circ v_r = 0$ avec $r \leqslant n$ et par suite $u_1 \circ \ldots \circ u_{n+1} = 0$ ce qui clôt la récurrence. On conclut

$$u_1 \circ \ldots \circ u_n = 0$$

Exercice 10 (***)

Soit E un K-ev et $\varphi_1, \ldots, \varphi_n$ des formes linéaires sur E. On pose

$$\forall x \in E$$
 $\Phi(x) = (\varphi_1(x), \dots, \varphi_n(x))$

Montrer

$$\Phi$$
 surjective $\iff (\varphi_1, \dots, \varphi_n)$ libre

Corrigé: Supposons Φ surjective. Soit $(\alpha_1, \ldots, \alpha_n) \in \mathbb{K}^n$ tel que $\sum_{i=1}^n \alpha_i \varphi_i = 0$. On note $\mathscr{C} = (e_1, \ldots, e_n)$ la base canonique de \mathbb{K}^n . Par surjectivité, pour $i \in [1; n]$, il existe $x_i \in E$ tel que $\Phi(x_i) = e_i$. Par suite

$$\forall k \in [1; n] \qquad \sum_{i=1}^{n} \alpha_i \underbrace{\varphi_i(x_k)}_{\delta_{i,k}} = \alpha_k = 0$$

d'où la liberté de $(\varphi_1, \ldots, \varphi_n)$. Supposons φ non surjective. On a donc rg $\Phi < n$. Par conséquent, on peut trouver un hyperplan H de \mathbb{K}^n contenant Im Φ . On dispose de $(\alpha_1, \ldots, \alpha_n) \in \mathbb{K}^n \setminus \{0_{\mathbb{K}^n}\}$ tel que H est décrit par l'équation $\sum_{i=1}^n \alpha_i x_i = 0$. Comme Im $\Phi \subset H$, on a

$$\forall x \in \mathbf{E}$$
 $\sum_{i=1}^{n} \alpha_i \varphi_i(x) = 0$

d'où

$$\sum_{i=1}^{n} \alpha_i \varphi_i = 0$$

ce qui prouve le caractère lié de $(\varphi_1, \ldots, \varphi_n)$. On conclut

$$\Phi$$
 surjective $\iff (\varphi_1, \dots, \varphi_n)$ libre

Exercice 11 (***)

Déterminer les sev stables pour l'endomorphisme dérivation de $\mathbb{K}[X]$.

Corrigé: Les sev $\{0\}$, $\mathbb{K}_n[X]$ avec $n \in \mathbb{N}$ et $\mathbb{K}[X]$ sont clairement stables par D. Montrons que ce sont les seuls. Soit F un sev de $\mathbb{K}[X]$ stable par D avec $F \neq \{0\}$. Supposons que $\{\deg P, P \in F \setminus \{0\}\}\}$ est majoré et notons n son maximum. Ainsi, on a $F \subset \mathbb{K}_n[X]$. Soit $P \in F$ tel que $n = \deg P$. On a $P^{(k)} \in F$ pour tout $k \in [0]$; $n \in P^{(k)}$ et $P^{(k)} \in P^{(k)}$ est échelonnée en degré, formée de polynômes non nuls, donc libre. Par conséquent, on a $n+1 \leq \dim F \leq \dim \mathbb{K}_n[X] = n+1$ d'où $F = \mathbb{K}_n[X]$. Si $\{\deg P, P \in F \setminus \{0\}\}$ n'est pas majoré, alors pour pour tout n entier, il existe $P \in F$ tel que $\deg P = p \geqslant n$ et par suite $F \supset \mathbb{K}_p[X] \supset \mathbb{K}_n[X]$ pour tout n entier d'où $F = \mathbb{K}[X]$. Ainsi

Les sev stable par dérivation sont exactement les $\mathbb{K}_n[X]$ avec n entier, $\{0\}$ et $\mathbb{K}[X]$.

Exercice 12 (***)

Soit E un K-ev de dimension finie et $u \in \mathcal{L}(E)$.

- 1. Montrer que u admet au moins deux sev stables.
- 2. On suppose u non nul et non injectif.
 - (a) Montrer que u admet au moins trois sev stables.
 - (b) Si dim E est impaire, montrer que u admet au moins quatre sev stables.
 - (c) Donner un exemple d'endomorphisme qui admet exactement trois sev stables.

Corrigé: 1. $\{0_E\}$ et E sont des sev stables.

- 2.(a) On a Ker $u \neq \{0_E\}$ et Ker $u \neq E$. Par ailleurs, on a sans difficulté $u(\text{Ker } u) \subset \text{Ker } u$. Ainsi L'endomorphisme u admet au moins trois sev stables.
- 2.(b) De même, on vérifie que Im u est stable par u. D'après le théorème du rang, on a $\dim \operatorname{Im} u = \dim \operatorname{E} \dim \operatorname{Ker} u < \dim \operatorname{E}$

et Im $u \neq \{0_{\rm E}\}$ puisque u non nul. Enfin, si Ker $u={\rm Im}\ u$, alors $\dim {\rm E}=2\,{\rm rg}\,(u)$ est paire ce qui est faux. Par conséquent

Les sev $\{0\}$, E, Ker u et Im u sont quatre sev stables distincts.

2.(c) On a va précisément choisir u tel que Ker $u={\rm Im}\ u$. On considère u canoniquement associé à $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.