Feuille d'exercices n°27

Dans ce qui suit, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Exercice 1 (***)

On note $\ell^2(\mathbb{N}, \mathbb{K})$ l'ensemble des suites $(u_n)_n \in \mathbb{K}^{\mathbb{N}}$ de carré sommable, *i.e* telles que $\sum |u_n|^2$ converge. Montrer que $\ell^2(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -ev normé par

$$||u||_2 = \sqrt{\sum_{n=0}^{+\infty} |u_n|^2}$$

Indications : Établir

$$\forall (a,b) \in \mathbb{R}^2 \qquad (a+b)^2 \leqslant 2(a^2+b^2)$$

pour montrer que $\ell^2(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -ev. Pour l'inégalité triangulaire, se ramener à une configuration dans \mathbb{K}^{N+1} avec N entier muni de la norme deux en posant pour $(u, v) \in \ell^2(\mathbb{N}, \mathbb{K})^2$, les suites $u^{\mathbb{N}} = (u_n \delta_{n \leq \mathbb{N}})_n$ et $v^{\mathbb{N}} = (v_n \delta_{n \leq \mathbb{N}})_n$.

Exercice 2 (***)

Soit E = $\{f \in \mathscr{C}^2([0;1],\mathbb{R}) \mid f(0) = f'(0) = 0\}$ muni de

$$\forall f \in E$$
 $N_1(f) = ||f||_{\infty} + ||f'||_{\infty} + ||f''||_{\infty}$ et $N_2(f) = ||f'' + 2f' + f||_{\infty}$

Justifier que N_1 et N_2 sont des normes puis les comparer.

Indications: Pour étudier la finesse de N_2 par rapport à N_1 , pour $f \in E$, poser h = f' + f et g = h' + h et procéder par variation de la constante pour trouver une expression de f fonction de f et une expression de f fonction de f conclure avec diverses inégalités triangulaires.

Exercice 3 (**)

Soient N_1, N_2 deux normes sur E un \mathbb{K} -ev.

- 1. On suppose que les boules unités fermées pour les deux normes sont égales. Montrer $N_1=N_2$.
- 2. Montrer que le résultat vaut encore s'il s'agit des boules unités ouvertes.

Indications : 1. En considérant un vecteur non nul normalisé (multiplié par l'inverse de sa norme), établir $N_2 \leq N_1$.

2. Adapter l'idée de la normalisation pour être dans la boule ouverte.

Exercice 4 (***)

Soit E un \mathbb{R} -ev et $N: E \to \mathbb{R}_+$ vérifiant l'homogénéité et la séparation. Montrer que N est une norme si et seulement si l'ensemble

$$\mathbf{B} = \{ x \in \mathbf{E} \mid \mathbf{N}(x) \leqslant 1 \}$$

est une partie convexe de E.

Indications: Si N convexe, considérer x et y non nuls puis utiliser une combinaison convexe de $\frac{x}{N(x)}$ et $\frac{y}{N(y)}$.

Exercice 5 (****)

Soit $E = \mathcal{C}^0([0;1], \mathbb{R})$ et $g \in E$. Pour $f \in E$, on pose

$$N(f) = \sup_{x \in [0:1]} |f(x)g(x)|$$

- 1. Déterminer une condition nécessaire et suffisante sur g pour que N soit une norme.
- 2. Si pour tout $x \in [0;1]$, $g(x) \neq 0$, montrer que N et $\|\cdot\|_{\infty}$ sont équivalentes.
- 3. Démontrer la réciproque de la question précédente.

Indications: 1. Supposer qu'il existe $]\alpha;\beta[\subset g^{-1}(\{0\})]$ et obtenir une contradiction. Puis considérer l'hypothèse contraire.

3. Si $g(x_0) = 0$ avec $x_0 \in [0; 1]$, il existe $\eta_n > 0$ tel que $g(x) \leqslant \frac{1}{n}$ pour pour $|x - x_0| \leqslant \eta_n$. Construire alors $f_n \in E$ telle que $||f_n||_{\infty} = 1$ et $N(f_n) \leqslant \frac{1}{n}$.

Exercice 6 (***)

Soit E un \mathbb{K} -evn. Montrer que deux boules ouvertes sont égales si et seulement elles ont même rayon et même centre.

Indications : Pour A partie bornée non vide de E, considérer le diamètre de A par

$$\delta(\mathbf{A}) = \sup_{(x,y)\in\mathbf{A}^2} \|x - y\|$$

Déterminer ensuite $\delta(B(a, r))$ avec $a \in E$ et r > 0. En déduire que deux boules égales sont de même rayon puis conclure en discutant des positions des centres.

Exercice 7 (***)

Soit $E = \mathbb{R}[X]$. On pose

$$\forall P = \sum_{n=0}^{+\infty} a_n X^n \in E$$
 $N_1(P) = \left| \sum_{n=0}^{+\infty} a_n \right| + \sum_{n=1}^{+\infty} \frac{|a_n|}{n}$ et $N_2(P) = \int_0^1 |P(t)| dt$

Justifier que N_1 et N_2 sont des normes sur E puis exhiber une suite convergente pour chaque norme mais avec des limites distinctes.

Indications: Considérer la suite $(X^n)_n$ et étudier $N_1(X^n-Q)$ avec $Q \in E$ judicieusement choisi.

2