Préparation à l'interrogation n°07

1 Étude asymptotique

- 1. Développement limité en 0 à l'ordre 2n + 1 de sh(x);
- 2. Développement limité en 0 à l'ordre n de $\ln(1+x)$;
- 3. Développement limité en 0 à l'ordre 3 de $\sqrt{1+x}$.

2 Croissances comparées

Soient α , $\beta > 0$. On a

$$\frac{e^{\alpha x}}{x^{\beta}} \xrightarrow[x \to +\infty]{} +\infty \qquad x^{\beta} e^{-\alpha x} \xrightarrow[x \to +\infty]{} 0 \qquad x^{\alpha} \ln(x)^{\beta} \xrightarrow[x \to 0]{} 0 \qquad \frac{\ln(x)^{\beta}}{x^{\alpha}} \xrightarrow[x \to +\infty]{} 0$$

3 Contrôle

Les fonctions sin et cos sont 1-lisp schitziennes sur $\mathbb R$: elles sont toutes deux dérivables sur $\mathbb R$ avec

$$|\sin'| = |\cos| \leqslant 1$$
 et $|\cos'| = |-\sin| \leqslant 1$

D'après l'inégalité des accroissements finis, on a

$$\forall (x,y) \in \mathbb{R}^2$$
 $|\sin(x) - \sin(y)| \leq |x - y|$ et $|\cos(x) - \cos(y)| \leq |x - y|$

4 Polynômes

Soit n entier non nul. On a $X^n - 1 = \prod_{k=0}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right)$

5 Réduction

Soit $u \in \mathcal{L}(E)$ avec E un K-ev de dimension finie.

1. On a

$$\begin{array}{l} u \ \mathrm{diagonalisable} \ \Longleftrightarrow \ \mathrm{E} = \bigoplus_{\lambda \in \mathrm{Sp}\,(u)} \mathrm{E}_{\lambda}(u) \\ \\ \Longleftrightarrow \ \dim \mathrm{E} = \sum_{\lambda \in \mathrm{Sp}\,(u)} \dim \mathrm{E}_{\lambda}(u) \\ \\ \Longleftrightarrow \chi_u \ \mathrm{scind\acute{e}} \ \mathrm{et} \ \forall \lambda \in \mathrm{Sp}\,(u) \qquad \dim \mathrm{E}_{\lambda}(u) = m_{\lambda}(u) \end{array}$$

2. On a

u diagonalisable $\iff \pi_u$ scindé à racines simples $\iff \exists P \in \mathbb{K}[X]$ scindé à racines simples et annulateur de u

6 Séries numériques

- 1. Comparaison série/intégrale;
- 2. Critère de d'Alembert;
- 3. Critère des séries alternées;
- 4. Contrôle du reste d'une série alternée.

7 Équation différentielle linéaire

Soient a, b dans $\mathscr{C}^0(I, \mathbb{K})$ et $(t_0, x_0) \in I \times \mathbb{K}$. Il existe une unique solution au problème de Cauchy

$$\begin{cases} x' = a(t)x + b(t) & (L) \\ x(t_0) = x_0 & (CI) \end{cases}$$

et celle-ci est donnée par

$$\forall t \in \mathbf{I} \qquad x(t) = e^{\mathbf{A}(t)} \left(x_0 + \int_{t_0}^t e^{-\mathbf{A}(s)} b(s) \, \mathrm{d}s \right) \quad \text{avec} \quad \mathbf{A}(t) = \int_{t_0}^t a(s) \, \mathrm{d}s$$

8 Trigonométrie

1.
$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$
 3. $\cos(t)^2 = \frac{1+\cos(2t)}{2}$

2.
$$\sin(p) - \sin(q) = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$
 4. $\sin(t)^2 = \frac{1-\cos(2t)}{2}$

9 Exercice type

Déterminer

$$\int^x \frac{\mathrm{d}t}{\cos(t)}$$

Corrigé : On a

$$\int_{-\infty}^{x} \frac{\mathrm{d}t}{\cos(t)} = \int_{-\infty}^{x} \frac{\cos(t)}{1 - \sin(t)^{2}} \, \mathrm{d}t$$

On pose $u = \sin(t)$ et il vient

$$\int^{x} \frac{\mathrm{d}t}{\cos(t)} = \int^{\sin(x)} \frac{\mathrm{d}u}{1 - u^{2}} = \left[\frac{1}{2} \ln \left(\left| \frac{1 + u}{1 - u} \right| \right) \right]^{\sin(x)}$$

D'où

$$\int_{-\infty}^{x} \frac{\mathrm{d}t}{\cos(t)} = \frac{1}{2} \ln \left(\left| \frac{1 + \sin(x)}{1 - \sin(x)} \right| \right)$$

10 Exercice type

Donner un exemple de sev non fermé dans un K-ev normé de dimension infinie (voir cours).

11 Exercice type

Donner un exemple de partie dont la frontière est d'intérieur non vide (voir cours).

12 Questions de cours

Espaces vectoriels normés, topologie (début), graphes usuels.