Feuille d'exercices n°20

Dans ce qui suit, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Exercice 1 (**)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ avec n entier impair. Montrer que la matrice A admet une valeur propre réelle.

Corrigé : La fonction $x \in \mathbb{R} \mapsto \chi_{\mathbf{A}}(x)$ est polynomiale donc continue, unitaire et de degré impair d'où

$$\chi_{\mathbf{A}}(x) = x^n + \mathbf{o}(x^n)$$

Ainsi

$$\chi_{\mathbf{A}}(x) \xrightarrow[x \to +\infty]{} +\infty \quad \text{et} \quad \chi_{\mathbf{A}}(x) \xrightarrow[x \to -\infty]{} -\infty$$

D'après le théorème des valeurs intermédiaires, la fonction $x \mapsto \chi_{\mathbf{A}}(x)$ s'annule sur \mathbb{R} ce qui prouve l'existence d'une racine réelle pour $\chi_{\mathbf{A}}$ et par conséquent

La matrice A admet une valeur propre réelle.

Exercice 2 (***)

Soit E un \mathbb{C} -ev de dimension finie, f et g dans $\mathscr{L}(E)$ tels que

$$f \circ g - g \circ f = f$$

Montrer que f est nilpotent et que f et g admettent au moins un vecteur propre commun.

Corrigé: Par récurrence, on montre

$$\forall k \in \mathbb{N} \qquad f^k \circ g - g \circ f^k = k f^k$$

Posons

$$\mathscr{P}(k): \quad f^k \circ g - g \circ f^k = kf^k$$

L'initialisation $\mathcal{P}(0)$ est immédiate. Supposons $\mathcal{P}(k)$ vraie pour k entier fixé. On a

$$f^{k+1} \circ g - g \circ f^{k+1} = f \circ (f^k \circ g) - g \circ f^{k+1} = f \circ (g \circ f^k + kf^k) - g \circ f^{k+1}$$
$$= (f \circ g) \circ f^k + kf^{k+1} - g \circ f^{k+1} = (g \circ f + f) \circ f^k + kf^{k+1} - g \circ f^{k+1}$$
$$f^{k+1} \circ g - g \circ f^{k+1} = (k+1)f^{k+1}$$

ce qui clôt la récurrence. On pose

$$\forall h \in \mathcal{L}(E)$$
 $\Phi(h) = h \circ g - g \circ h$

On a $\Phi \in \mathscr{L}(\mathscr{L}(E))$ et $\Phi(f^k) = kf^k$ pour tout k entier. Si f n'est pas nilpotent, l'endomorphisme Φ aurait un nombre infini de valeurs propres ce qui est absurde. Il existe donc p entier non nul tel que $f^p = 0$. Puis, pour $x \in \operatorname{Ker} f$, on a $f(g(x)) = g(f(x)) + f(x) = 0_E$ d'où $g(x) \in \operatorname{Ker} f$ ce qui prouve la stabilité de $\operatorname{Ker} f$ par g. L'endomorphisme induit $g_{\operatorname{Ker} f}$ est trigonalisable puisqu'on est dans un \mathbb{C} -ev. Un vecteur propre de $g_{\operatorname{Ker} f}$ est vecteur propre de g et également vecteur propre de f. On conclut

On a f nilpotent et f et q admettent au moins un vecteur propre commun.

Variante : On a montré $f^k \circ g - g \circ f^k = kf^k$ pour tout k entier. Par combinaison, linéaire, on en déduit

$$\forall P \in \mathbb{C}[X]$$
 $P(f) \circ g - g \circ P(f) = (XP')(f)$

On prend $P = \pi_f$. On en déduit $X\pi'_f$ est annulateur de f d'où $\pi_f|X\pi'_f$. Or, les polynômes ont même degré avec π_f unitaire d'où $X\pi'_f = d\pi_f$ notant $d = \deg \pi_f$. On résout l'équation différentielle $x' - \frac{d}{t}x = 0$ sur $]0; +\infty[$ et on trouve la droite $\text{Vect}\,(t \mapsto t^d)$ comme espace de solutions. Ainsi, on a $\pi_f = X^d$ ce qui prouve que f est nilpotent.

Exercice 3 (***)

Soit E un K-ev de dimension finie, $u \in \mathcal{L}(E)$.

- 1. Soit $x \in E \setminus \{0_E\}$. Justifier qu'il existe un unique polynôme unitaire $\pi_{u,x} \in \mathbb{K}[X]$ vérifiant $\pi_{u,x}(u)(x) = 0_E$ et divisant tout polynôme $P \in \mathbb{K}[X]$ vérifiant $P(u)(x) = 0_E$.
- 2. On suppose $\pi_u = \mathbf{P}^r$ avec \mathbf{P} irréductible et r entier non nul. Montrer qu'il existe $x \in \mathbf{E} \setminus \{0_{\mathbf{E}}\}$ tel que $\pi_{u,x} = \pi_u$.

Corrigé : 1. Soit $x \in E \setminus \{0_E\}$. On pose

$$I_x = \{ P \in \mathbb{K}[X] \mid P(u)(x) = 0_E \}$$

On vérifie sans difficulté que I_x est un idéal de $\mathbb{K}[X]$, non nul car $\pi_u \in I_x$ avec $\pi_u \neq 0$. Ainsi, d'après le théorème de structure des idéaux de $\mathbb{K}[X]$

Pour
$$x \in E \setminus \{0_E\}$$
, il existe $\pi_{u,x}$ unitaire qui engendre l'idéal I_x .

2. Pour $x \in E \setminus \{0_E\}$, on a $\pi_u \in I_x$ d'où $\pi_{u,x} | \pi_u = P^r$ donc $\pi_{u,x}$ est de la forme P^α avec $\alpha \in \llbracket 1 ; r \rrbracket$. Soit $\mathscr{B} = (e_1, \ldots, e_n)$ base de E. Pour tout $i \in \llbracket 1 ; n \rrbracket$, il existe $\alpha_i \in \llbracket 1 ; r \rrbracket$ tel que $\pi_{u,e_i} = P^{\alpha_i}$. On choisit $\alpha_q = \max_{i \in \llbracket 1 ; n \rrbracket} \alpha_i$. Ainsi, on a

$$\forall i \in [1; n] \qquad \pi_{u,e_q}(u)(e_i) = P^{\alpha_q}(u)(e_i) = P^{\alpha_q-\alpha_i}(u) \circ P^{\alpha_i}(u)(e_i) = 0$$

ce qui prouve que π_{u,e_q} s'annule sur la base \mathscr{B} donc est nul. Il s'ensuit $\pi_u|\pi_{u,e_q}$ et ces polynômes sont donc associés et unitaires donc égaux. On conclut

Si $\pi_u = P^r$ avec P irréductible et r entier non nul, il existe $x \in E \setminus \{0_E\}$ tel que $\pi_{u,x} = \pi_u$.

Exercice 4 (**)

Soit E = $\{f \in \mathcal{C}^0([0; +\infty[, \mathbb{R}) \mid f(0) = 0\})$. On pose

$$\forall f \in E \qquad T(f)(x) = \begin{cases} \frac{1}{x} \int_0^x f(t) dt & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$

- 1. Justifier que E est un \mathbb{R} -ev et $T \in \mathcal{L}(E)$.
- 2. Déterminer les éléments propres de T.

Corrigé: 1. Notant $\varphi : \mathscr{C}([0; +\infty[, \mathbb{R}) \to \mathbb{R}, f \mapsto f(0))$, on a $E = \text{Ker } \varphi$ sev de $\mathscr{C}([0; +\infty[, \mathbb{R}))$. Soit $f \in E$. On a T(f) continue sur $[0; +\infty[$ comme quotient de fonctions continues dont le dénominateur ne s'annule pas sur $[0; +\infty[$. Puis, notant $F : x \mapsto \int_0^x f(t) dt$, on a

$$\forall x > 0$$
 $T(f)(x) = \frac{F(x) - F(0)}{x - 0} \xrightarrow[x \to 0]{} F'(0) = f(0) = 0$

Ainsi, l'application T est à valeurs dans E et T est linéaire par linéarité de l'intégrale et du produit. Ainsi

L'ensemble E est un
$$\mathbb{R}$$
-ev et $T \in \mathcal{L}(E)$.

2. Soit λ réel et $f \in \mathbb{E} \setminus \{0\}$ tel que $\mathrm{T}(f) = \lambda f$. Ainsi

$$\forall x \geqslant 0$$
 $\int_0^x f(t) dt = \lambda x f(x)$

Par dérivation, il vient

$$\forall x \geqslant 0$$
 $\lambda x f'(x) + (\lambda - 1) f(x) = 0$

Si $\lambda = 0$, alors f est nulle ce qui est exclu. Pour λ non nul, on trouve

$$f \in \text{Vect}(x \mapsto x^{\alpha}) \quad \text{avec} \quad \alpha = \frac{1-\lambda}{\lambda}$$

On veut f continue en 0 avec f(0) = 0 ce qui impose $\alpha > 0$ d'où $\lambda \in]0;1[$. Réciproquement, on vérifie sans difficulté que Vect $(x \mapsto x^{\alpha})$ est bien une droite de vecteurs propres et on conclut

$$\forall \lambda \in]0;1[$$
 $\alpha = \frac{1-\lambda}{\lambda}$ valeur propre de T et $E_{\alpha}(T) = \text{Vect}(x \mapsto x^{\alpha})$

Exercice 5 (***)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec rg A = 2. Déterminer une expression de χ_A en fonction de $\operatorname{Tr}(A)$ et $\operatorname{Tr}(A^2)$.

Corrigé : En complétant une base du noyau de A en base de \mathbb{K}^n , on trouve que A est semblable à $M = \begin{pmatrix} 0 & B \\ \hline 0 & A' \end{pmatrix}$ avec $A' = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Ainsi, on a

$$\chi_{A} = X^{n-2}(X - (a+d)X + ad - bc) = X^{n-2}(X^{2} - \text{Tr}(A)X + ad - bc)$$

On calcule (par blocs) A² et il vient

$$\mathbf{M}^2 = \begin{pmatrix} 0 & \mathbf{B}\mathbf{A}' \\ \hline 0 & \mathbf{A}'^2 \end{pmatrix} \quad \text{et} \quad \mathbf{A}'^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + dc & bc + d^2 \end{pmatrix}$$

Ainsi

$$Tr(A)^{2} - Tr(A^{2}) = (a+d)^{2} - (a^{2} + 2bc + d^{2}) = 2(ad - bc)$$

Et par conséquent

$$\chi_{A} = X^{n-2} \left(X^{2} - \text{Tr}(A)X + \frac{(\text{Tr }A)^{2} - \text{Tr}(A^{2})}{2} \right)$$

Exercice 6 (***)

Soient A, B dans $\mathcal{M}_n(\mathbb{K})$.

- 1. On suppose qu'il existe $X \in \mathcal{M}_n(\mathbb{K})$ avec rg $X = r \geqslant 1$ tel que AX = XB. Montrer que χ_A et χ_B ont un facteur commun de degré r.
- 2. La réciproque est-elle vraie?
- 3. Déterminer une condition nécessaire et suffisante pour que, pour $M \in \mathcal{M}_n(\mathbb{C})$, l'équation AX XB = M d'inconnue $X \in \mathcal{M}_n(\mathbb{C})$ admette une unique solution.

Corrigé: 1. Comme rg X = r, il existe P et Q dans $GL_n(\mathbb{K})$ telles que $X = PJ_rQ$ d'où

$$A'J_r = J_rB' \quad \text{avec} \quad A' = P^{-1}AP = \left(\begin{array}{c|c} A_1' & A_2' \\ \hline A_3' & A_4' \end{array} \right) \qquad B' = Q^{-1}BQ = \left(\begin{array}{c|c} B_1' & B_2' \\ \hline B_3' & B_4' \end{array} \right)$$

Ainsi
$$\left(\begin{array}{c|c} A_1' & 0 \\ \hline A_3' & 0 \end{array} \right) = \left(\begin{array}{c|c} B_1' & B_2' \\ \hline 0 & 0 \end{array} \right)$$

d'où
$$A_1' = B_1' \quad \text{et} \quad A_3' = 0 \qquad B_2' = 0$$

Par conséquent
$$A = \left(\begin{array}{c|c} A_1' & A_2' \\ \hline 0 & A_4' \end{array}\right) \qquad B = \left(\begin{array}{c|c} B_1' & 0 \\ \hline B_3' & B_4' \end{array}\right)$$

Ainsi $\chi_{A_1'}|\chi_{A'}$ $\chi_{B_1'}|\chi_{B'}$ et $\chi_{A_1'}=\chi_{B_1'}$

Comme on a $\chi_{A}=\chi_{A'}$ et $\chi_{B}=\chi_{B'}$, on conclut

Les polynômes χ_A et χ_B ont un facteur commun de degré r.

2. On choisit A = 0 et $B = \sum_{k=1}^{n-1} E_{k,k+1}$ d'où $\chi_A = \chi_B = X^n$. On a XB = 0 d'où Im $B \subset Ker X$ et rg B = n - 1 d'où $rg X \leq 1$. Pour $rg X \geq 2$, on conclut

La réciproque est fausse.

3. On pose
$$\forall X \in \mathscr{M}_n(\mathbb{C}) \qquad \Phi(X) = AX - XB$$

On a clairement $\Phi \in \mathscr{L}(\mathscr{M}_n(\mathbb{C}))$ et on cherche donc une condition nécessaire et suffisante pour que Φ soit bijective, c'est-à-dire Φ injective puisqu'il s'agit d'un endomorphisme en dimension finie. Si Ker $\Phi \neq \{0\}$, alors il existe $X \in \mathscr{M}_n(\mathbb{C}) \setminus \{0\}$ telle que AX = XB. Par conséquent, les polynômes χ_A et χ_B ont un facteur commun de degré $\operatorname{rg}(X) \geqslant 1$ et donc une racine commune (ce facteur est scindé dans $\mathbb{C}[X]$). Il en résulte que $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) \neq \varnothing$. Ainsi, la condition $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \varnothing$ est nécessaire pour Φ bijective. Supposons $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) \neq \varnothing$. En remarquant $\operatorname{Sp}(B) = \operatorname{Sp}(B^\top)$, on prend U et V matrices colonnes non nulles telles que $AU = \lambda U$ et $B^\top V = \lambda V$ pour $\lambda \in \operatorname{Sp}(A) \cap \operatorname{Sp}(B)$. Alors, posant $X = UV^\top$, on a bien $X \neq 0$ et on trouve $\Phi(X) = 0$. On conclut

$$\Phi \in \mathrm{GL}(\mathscr{M}_n(\mathbb{C})) \iff \mathrm{Sp}(A) \cap \mathrm{Sp}(B) = \varnothing$$

Exercice 7 (***)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si A admet une valeur propre complexe non réelle, alors il existe un plan vectoriel stable par A.

Corrigé : Soit $X \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ et $\lambda \in \mathbb{C} \setminus \mathbb{R}$ tels que $AX = \lambda X$. On note $X_1 = \operatorname{Re} X$, $X_2 = \operatorname{Im} X$, $\lambda_1 = \operatorname{Re} \lambda$ et $\lambda_2 = \operatorname{Im} \lambda$. On a

$$AX = \lambda X \iff AX_1 + iAX_2 = (\lambda_1 X_1 - \lambda_2 X_2) + i(\lambda_2 X_1 + \lambda_1 X_2)$$

$$\iff \begin{cases} AX_1 = \lambda_1 X_1 - \lambda_2 X_2 \\ AX_2 = \lambda_2 X_1 + \lambda_1 X_2 \end{cases}$$

Justifions enfin que (X_1, X_2) est une famille libre de $\mathcal{M}_{n,1}(\mathbb{R})$. Soit α, β des réels tels que $\alpha X_1 + \beta X_2 = 0$. On a

$$\alpha X_1 + \beta X_2 = \alpha \frac{X + \bar{X}}{2} + \beta \frac{X - \bar{X}}{2i} = 0 \iff \left(\frac{\alpha}{2} + \frac{\beta}{2i}\right) X + \left(\frac{\alpha}{2} - \frac{\beta}{2i}\right) \bar{X} = 0$$

Or, la famille (X, \bar{X}) est une famille libre de $\mathcal{M}_{n,1}(\mathbb{C})$ puisqu'on a $AX = \lambda X$ et passant au conjugué $A\bar{X} = \bar{\lambda}\bar{X}$ avec $\lambda \neq \bar{\lambda}$ et il s'agit donc d'une famille de vecteurs propres associés à des valeurs propres distinctes. On en déduit

$$\begin{cases} \alpha - i\beta = 0 \\ \alpha + i\beta = 0 \end{cases}$$

et il s'agit d'un système de Cramer d'où $\alpha = \beta = 0$. Ainsi, la famille (X_1, X_2) est libre et le plan vectoriel Vect (X_1, X_2) est donc stable par A d'où

Il existe un plan vectoriel stable par A.

Exercice 8 (**)

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que χ_A divise π_A^n .

Corrigé : On se place dans \mathbb{C} . On a $\chi_A = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)^{m_\lambda(A)}$ et $\pi_A = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)^{\alpha_\lambda}$. Comme $\pi_A | \chi_A$ et que les racines de π_A sont exactement les valeurs propres de A, on a

$$\forall \lambda \in \mathrm{Sp}(A) \qquad 1 \leqslant \alpha_{\lambda} \leqslant m_{\lambda}(A) \leqslant n \leqslant n\alpha_{\lambda}$$

d'où

$$\prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)^{m_{\lambda}(A)} | \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)^{n\alpha_{\lambda}} = \pi_{A}^{n}$$

Dans $\mathbb{C}[X]$, il en résulte que $\chi_A|\pi_A^n$. Si $\mathbb{K}=\mathbb{R}$, on a l'existence de $Q\in\mathbb{C}[X]$ tel que $\pi_A^n=Q\chi_A$. Par conjugaison, comme π_A et χ_A sont dans $\mathbb{R}[X]$, il vient $\pi_A^n=\bar{Q}\chi_A$ d'où $(Q-\bar{Q})\chi_A=0$ puis $Q=\bar{Q}$ par intégrité. La divisibilité a donc lieu dans $\mathbb{K}[X]$ que $\mathbb{K}=\mathbb{R}$ ou $\mathbb{K}=\mathbb{C}$ et on conclut

$$\chi_{\rm A}|\pi_{\rm A}^n$$

Exercice 9 (**)

Soit n entier. On définit φ sur $\mathbb{K}_n[X]$ par $\varphi(P) = P(X+1)$ pour $P \in \mathbb{K}_n[X]$. Déterminer π_{φ} .

Corrigé : Posons $\tau = \varphi - \operatorname{id}$. Pour $k \in \llbracket 0 ; n \rrbracket$, on a $\tau(X^k) = \sum_{j=0}^{k-1} \binom{k}{j} X^j$ d'où $\deg \tau(X^k) = k-1$ pour $k \in \llbracket 1 ; n \rrbracket$ et par combinaison linéaire, on obtient

$$\forall P \in \mathbb{K}_n[X]$$
 $\deg \tau(P) = \begin{cases} \deg P - 1 & \text{si } \deg P \geqslant 1 \\ -\infty & \text{sinon} \end{cases}$

Par récurrence immédiate, on en déduit $\tau^{n+1}=0$ et $\tau^n\neq 0$ puisque $\tau^n(\mathbf{X}^n)=n!\neq 0$. On conclut

$$\pi_{\rm D} = \chi_{\rm D} = ({\rm X} - 1)^{n+1}$$

Exercice 10 (**)

Soit u un endomorphisme de E un \mathbb{K} -ev admettant un polynôme minimal π_u et $P \in \mathbb{K}[X]$.

- 1. Montrer $P(u) \in GL(E) \iff P \wedge \pi_u = 1$
- 2. Montrer que si $P(u) \in GL(E)$, alors $P(u)^{-1} \in \mathbb{K}[u]$.

Corrigé : 1. Si $P \wedge \pi_u = 1$, d'après le théorème de Bézout, il existe $(A, B) \in \mathbb{K}[X]^2$ tel que $AP + B\pi_u = 1$ d'où

$$id = A(u) \circ P(u) + B(u) \circ \pi_u(u) = A(u) \circ P(u) = P(u) \circ A(u)$$

ce qui prouve le sens indirect. Supposons $P \wedge \pi_u \neq 1$. Notons $D = P \wedge \pi_u$. Comme D divise P et π_u , on a P = QD et $\pi_u = RD$ avec Q et R dans $\mathbb{K}[X]$. Comme π_u est non nul, on a R et D non nuls et D non constant puisque D est unitaire avec $D \neq 1$. Il vient

$$R(u) \circ P(u) = R(u) \circ D(u) \circ Q(u) = \pi_u(u) \circ Q(u) = 0_{\mathscr{L}(E)}$$

Si $P(u) \in GL(E)$, en composant par $P(u)^{-1}$ à droite, on obtient $R(u) = 0_{\mathscr{L}(E)}$ avec deg $R < \deg \pi_u$ ce qui est absurde. On conclut

$$P(u) \in GL(E) \iff P \wedge \pi_u = 1$$

Variante: Pour le sens direct, on peut aussi considérer $P = \lambda \prod_{i=1}^r P_i^{\alpha_i}$ sa décomposition en facteurs irréductibles avec les α_i entiers non nuls. Supposons qu'il existe $i \in [1; r]$ tel que $\pi_u = P_i Q$ avec $Q \in K[X]$. Il s'ensuit que π_u divise PQ d'où $P(u) \circ Q(u) = 0_{\mathscr{L}(E)}$ et en composant par $P(u)^{-1}$ à gauche, on en déduit $Q(u) = 0_{\mathscr{L}(E)}$ avec $Q \neq 0$ et deg $Q < \deg \pi_u$ (car P_i non constant) ce qui est absurde. On en déduit que pour tout $i \in [1; r]$, le polynôme irréductible P_i ne divise pas π_u autrement dit $\pi_u \wedge P_i = 1$ et il s'ensuit $P \wedge \pi_u = 1$.

2. D'après ce qui précède, on a vu que si P(u) est inversible, alors il existe $A \in \mathbb{K}[X]$ tel que $A(u) \circ P(u) = \mathrm{id}$, autrement dit $A(u) = P(u)^{-1}$ et donc

Si
$$P(u) \in GL(E)$$
, alors $P(u)^{-1} \in \mathbb{K}[u]$.

Exercice 11 (***)

Soit $A \in \mathscr{M}_n(\mathbb{K})$ avec $n \geqslant 2$.

- 1. On suppose $\forall i \in \llbracket 1; n \rrbracket$ $|a_{i,i}| > R_i$ avec $R_i = \sum_{j \in \llbracket 1; n \rrbracket \setminus \{i\}} |a_{i,j}|$ Montrer que $A \in GL_n(\mathbb{K})$.
- 2. Pour $(a, R) \in \mathbb{C} \times \mathbb{R}_+$, on note $D_f(a, R) = \{z \in \mathbb{C} \mid |z a| \leq R\}$. Montrer

$$\operatorname{Sp}(A) \subset \bigcup_{i=1}^{n} \operatorname{D}_{f}(a_{i,i}, \mathbf{R}_{i})$$

Les ensembles $D_f(a_{i,i}, R_i)$ sont appelés disques de Gerschgorin.

Corrigé: 1. Une telle matrice est dite à diagonale dominante stricte. Supposons que $A \notin GL_n(\mathbb{K})$, autrement dit on dispose de $X \in \mathscr{M}_{n,1}(\mathbb{K}) \setminus \{0_{\mathscr{M}_{n,1}(\mathbb{K})}\}$ telle que AX = 0. On note

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 avec les $x_i \in \mathbb{K}$. Comme $X \neq 0_{\mathcal{M}_{n,1}(\mathbb{K})}$, alors on dispose de $i_0 \in [1; n]$ tel que

$$|x_{i_0}| = \max_{i \in [1; n]} |x_i| > 0$$

Si ce maximum était nul, toutes les coordonnées de X seraient nulles ce qui contredirait l'hypothèse X non nulle. Par ailleurs, la i_0 -ème ligne de AX est nulle donc

$$\sum_{j=1}^{n} a_{i_0,j} x_j = 0 \iff a_{i_0,i_0} x_{i_0} + \sum_{j \in [1; n] \setminus \{i_0\}} a_{i_0,j} x_j = 0$$

$$\iff |a_{i_0,i_0}| = \left| \sum_{j \in [1; n] \setminus \{i_0\}} a_{i_0,j} \frac{x_j}{|x_{i_0}|} \right|$$

la division par $|x_{i_0}|$ étant possible puisque le nombre est non nul. Par inégalité triangulaire et choix de $|x_{i_0}| = \max_{i \in [\![1\,;\,n]\!]} |x_i|$, il vient alors

$$|a_{i_0,i_0}| \leqslant \sum_{j \in [[1;n]] \setminus \{i_0\}} |a_{i_0,j}| \underbrace{\left|\frac{x_j}{x_{i_0}}\right|}_{\leqslant 1} \leqslant \sum_{j \in [[1;n]] \setminus \{i_0\}} |a_{i_0,j}|$$

ce qui contredit l'hypothèse de départ faite sur A. Ainsi

$$\forall X \in \mathscr{M}_{n,1}(\mathbb{K}) \quad AX = 0 \implies X = 0$$

d'où

$$A \in \mathrm{GL}_n(\mathbb{K})$$

Remarque : Ce résultat est souvent référencé sous l'intitulé lemme d'Hadamard.

2. Soit $\lambda \in \operatorname{Sp}(A)$. Par suite $A - \lambda I_n \notin \operatorname{GL}_n(\mathbb{K})$ d'où la négation du caractère à diagonale dominante stricte, *i.e.*

$$\exists i \in [1; n] \mid |a_{i,i} - \lambda| \leqslant R_i$$

Autrement dit

$$\boxed{\operatorname{Sp}(A) \subset \bigcup_{i=1}^{n} \operatorname{D}_{f}(a_{i,i}, \mathbf{R}_{i})}$$

On a localisé le spectre dans les disques dits de Gershgorin.