Feuille d'exercices n°30

Exercice 1 (***)

Soit $E = \mathbb{R}[X]$. On pose $\mathcal{O} = \{P \in E \mid P(0) \neq 0\}$ et on note

$$\forall P \in E$$
 $N_1(P) = \sup_{t \in [0;1]} |P(t)|$ $N_2(P) = \sup_{t \in [1;2]} |P(t)|$

Déterminer la nature topologique de \mathcal{O} pour les normes N_1 et N_2 .

Corrigé: Notons $\varphi : E \to \mathbb{R}, P \mapsto P(0)$. L'application est clairement continue pour N_1 et on a $\mathcal{O} = \varphi^{-1}(\{0\})$. Puis, la suite $(P_n)_n$ avec $P_n = \frac{1}{n}$ pour n entier non nul est à valeurs dans \mathcal{O} , convergente de limite nulle donc hors de \mathcal{O} et par conséquent

L'ensemble \mathcal{O} est ouvert non fermé pour la norme N_1 .

Posons $P_n = (1 - X/2)^n$ pour n entier. On a

$$\forall n \in \mathbb{N}$$
 $\varphi(P_n) = 1$ et $N_2(P_n) = \sup_{t \in [1;2]} \left| \left(1 - \frac{t}{2} \right)^n \right| = \frac{1}{2^n}$

Ainsi

$$P_n \xrightarrow[n \to \infty]{N_2} 0$$
 et $\varphi(P_n) \xrightarrow[n \to \infty]{} 1 \neq \varphi(0)$

L'application φ n'est donc pas continue pour N_2 . Considérons $Q_n = P_n - 1$ pour tout n entier. On a $Q_n \in E \setminus \mathcal{O}$ pour tout n entier et $Q_n \xrightarrow[n \to \infty]{N_2} -1 \notin E \setminus \mathcal{O}$ d'où $E \setminus \mathcal{O}$ n'est pas fermé, autrement dit \mathcal{O} n'est pas un ouvert de E. De même, on a $P_n \in \mathcal{O}$ pour tout n entier et $P_n \xrightarrow[n \to \infty]{N_2} 0$ avec $0 \notin \mathcal{O}$, donc \mathcal{O} n'est pas un fermé de E. On conclut

L'ensemble $\mathcal O$ n'est ni ouvert, ni fermé pour la norme N_2 .

Exercice 2 (***)

Montrer qu'une somme de fermés n'est pas nécessairement fermée.

Corrigé: Dans \mathbb{R}^2 , on considère $F_1 = \mathbb{R} \times \{0\}$ et $F_2 = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}$. Notons φ : $(x,y) \mapsto y$ et $\psi: (x,y) \mapsto xy - 1$ polynomiales donc continues, on a

$$F_1 = \varphi^{-1}(\{0\})$$
 et $F_2 = \psi^{-1}(\{0\})$

ce qui prouve leur fermeture. Puis, on a

$$F_1 + F_2 = \left\{ \left(x + y, \frac{1}{y} \right), (x, y) \in \mathbb{R} \times \mathbb{R}^* \right\}$$

L'inclusion $F_1 + F_2 \subset \mathbb{R} \times \mathbb{R}^*$ est immédiate. Pour $(x, y) \in \mathbb{R} \times \mathbb{R}^*$ et $(a, b) \in \mathbb{R} \times \mathbb{R}^*$, on a

$$\left(x+y,\frac{1}{y}\right) = (a,b) \iff (x,y) = \left(a-\frac{1}{b},\frac{1}{b}\right)$$

ce qui prouve

$$F_1 + F_2 = \mathbb{R} \times \mathbb{R}^*$$

C'est ensemble n'est pas fermé puisque la suite $\left(0,\frac{1}{n}\right)_{n\geqslant 1}$ est à valeurs dans $\mathbb{R}\times\mathbb{R}^*$, convergente mais la limite n'est pas dans cet ensemble.

Dans \mathbb{R} , c'est possible mais plus délicat. On a $\mathbb{Z} + \sqrt{2}\mathbb{Z}$ dense dans \mathbb{R} (non trivial), distinct de \mathbb{R} et somme de deux fermés. Ou aussi, en considérant

$$F_1 = \mathbb{N}^*$$
 et $F_2 = \left\{ -n + \frac{1}{n}, n \in \mathbb{N}^* \right\}$

La suite $\left(\frac{1}{n}\right)_{n>1}$ est à valeurs dans F_1+F_2 mais pas sa limite. On conclut

Une somme de fermés n'est pas nécessairement fermée.

Exercice 3 (***)

Soit n entier non nul et Ω_n l'ensemble des polynômes de $\mathbb{R}_n[X]$ scindé à racines simples de degré égal à n. Montrer que Ω_n est un ouvert.

Corrigé : Soit $P \in \Omega_n$. On note $\alpha_1 < \ldots < \alpha_n$ les racines distinctes de P. Soit β_0, \ldots, β_n des réels tels que $\beta_0 < \alpha_1 < \beta_1 < \ldots < \alpha_n < \beta_n$. On considère $f : \mathbb{R}_n[X] \to \mathbb{R}^{n+1}, Q \mapsto (Q(\beta_0), \ldots, Q(\beta_n))$. L'application f est linéaire sur un espace de dimension finie donc continue. Pour $\varepsilon > 0$ suffisamment petit, on peut choisir $Q \in \mathbb{R}_n[X]$ tel que si $\|Q - P\| \le \varepsilon$, alors $Q(\beta_i)P(\beta_i) > 0$ pour tout $i \in [0; n]$. Par suite, on a $Q(\beta_i)Q(\beta_{i+1}) < 0$ pour tout $i \in [0; n-1]$ ce qui prouve que Q est scindé à racines simples. Ainsi, il existe $\varepsilon > 0$ tel que $Q(\beta_i) = 0$ conclut

L'ensemble Ω_n est un ouvert.

Exercice 4 (***)

Soit $E = \mathbb{R}[X]$. Déterminer deux normes sur E, une pour laquelle l'endomorphisme de dérivation est continue et l'autre pour laquelle il ne l'est pas.

Corrigé : On note $D \in \mathcal{L}(E)$ l'endomorphisme de dérivation. Pour n entier, on pose $P_n = X^n$.

On a
$$\forall n \in \mathbb{N} \qquad \|P_n\|_1 = \int_0^1 t^n \, \mathrm{d}t = \frac{1}{n+1} \xrightarrow[n \to \infty]{} 0$$
 et
$$\forall n \in \mathbb{N}^* \qquad \mathrm{D}(P_n) = n \mathrm{X}^{n-1} \quad \text{et} \quad \|\mathrm{D}(P_n)\|_1 = \int_0^1 n t^{n-1} \, \mathrm{d}t = 1$$
 Ainsi
$$P_n \xrightarrow[n \to \infty]{} 0 \quad \text{et} \quad \mathrm{D}(P_n) \xrightarrow[n \to \infty]{} \mathrm{D}(0)$$

Pour $P \in E$, on pose

$$N(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)|$$

On vérifie sans difficulté que N est une norme. Puis

$$\forall P \in E$$
 $N(D(P)) = \sum_{k=0}^{+\infty} |P^{(k+1)}(0)| = N(P) - |P(0)| \le N(P)$

Ainsi, l'application linéaire D est lipschitzienne en 0 pour la norme N. On conclut

La dérivation D est continue pour N, discontinue pour $\|\cdot\|_1$.

Exercice 5 (****)

Soit E un K-evn et A une partie non vide bornée de E. On note $\delta(A) = \sup_{(x,y) \in A^2} ||x-y||$. Montrer

$$\delta(A) = \delta(\bar{A}) = \delta(\partial A)$$

Corrigé: Il existe $M \ge 0$ tel que $||x|| \le M$ pour tout $x \in A$. Ainsi, pour $x \in \overline{A}$, comme il existe $(x_n)_n \in A^{\mathbb{N}}$ avec $x_n \xrightarrow[x \to \infty]{} x$, on a

$$||x|| = \lim_{n \to +\infty} ||x_n|| \leq M$$

On en déduit que \bar{A} est bornée et $\partial A \subset \bar{A}$ également. Avec $A \subset \bar{A}$, il vient clairement $\delta(A) \leq \delta(\bar{A})$. Soit $(a,b) \in \bar{A}^2$. Il existe $(a_n)_n$ et $(b_n)_n$ dans $A^{\mathbb{N}}$ telles que $a_n \xrightarrow[n \to \infty]{} a$ et $b_n \xrightarrow[n \to \infty]{} b$. Ainsi

$$||a - b|| = \lim_{n \to +\infty} ||a_n - b_n||$$
 et $\forall n \in \mathbb{N}$ $||a_n - b_n|| \le \delta(A)$

Par conséquent

$$\delta(A) = \delta(\bar{A})$$

Soit $(a,b) \in A^2$ distincts (si A est un singleton, le problème est trivial). On pose $\varphi: t \mapsto a + t(b-a)$. L'ensemble $I = \{t \in \mathbb{R} \mid \varphi(t) \in A\}$ est une partie non vide et bornée de \mathbb{R} . En effet, pour $t \in I$, on a

$$|t| = \frac{1}{\|b - a\|} \|t(b - a) + a - a\| \le \frac{1}{\|b - a\|} (M + \|a\|)$$

On note $t_0 = \text{Inf I et } t_1 = \text{Sup I}$. On a clairement $t_1 \geqslant 1$ et $t_0 \leqslant 0$. Par caractérisation séquentielle des bornes supérieures et inférieures, on obtient $\varphi(t_0) \in \bar{A}$ et $\varphi(t_1) \in \bar{A}$. Supposons $\varphi(t_1) \in \hat{A}$. Il existe alors r > 0 tel que $B(\varphi(t_1), r) \subset A$. Il s'ensuit

$$\varphi\left(t_1 + \frac{r}{2\|b - a\|}\right) = \varphi(t_1) + \frac{r}{2} \frac{b - a}{\|b - a\|} \in B(\varphi(t_1), r) \subset A \text{ et } t_1 + \frac{r}{2\|b - a\|} > t_1$$

ce qui est absurde par choix de t_1 . On en déduit que $\varphi(t_1) \notin \mathring{A}$ d'où $\varphi(t_1) \in \overline{A} \setminus \mathring{A} = \partial A$. On procède à l'identique pour $\varphi(t_0)$. Enfin, on a

$$\|\varphi(t_1) - \varphi(t_0)\| = \|(t_1 - t_0)(b - a)\| = (t_1 - t_0)\|b - a\| \ge \|b - a\|$$

d'où

$$\forall (a,b) \in A^2 \qquad \delta(\partial A) \geqslant ||b-a||$$

Passant à la borne supérieure, on obtient $\delta(\partial A) \geqslant \delta(A)$ et comme $\partial A \subset A$, on a $\delta(\partial A) \leqslant \delta(\bar{A}) = \delta(A)$. On conclut

$$\delta(\mathbf{A}) = \delta(\bar{\mathbf{A}}) = \delta(\partial \mathbf{A})$$

Exercice 6 (***)

 $\text{Soit } \mathbf{E} = \mathscr{C}^0(\left[\,0\,;1\,\right],\mathbb{R}) \text{ muni de } \|\cdot\|_\infty \text{ et } \mathbf{A} = \left\{f \in \mathbf{E} \mid f(0) = 0 \quad \text{et} \quad \int_0^1 \! f(t) \, \mathrm{d}t \geqslant 1\right\}.$

- 1. Montrer que A est une partie fermée de E.
- 2. Montrer que

$$\forall f \in A \qquad ||f||_{\infty} > 1$$

3. Calculer d(0, A).

Corrigé: 1. Notons $\varphi_1: f \mapsto f(0)$ et $\varphi_2: f \mapsto \int_0^1 f(t) dt$. Les applications φ_1 et φ_2 sont continues pour $\|\cdot\|_{\infty}$ et on a

$$A = \varphi_1^{-1}(\{0\}) \cap \varphi_2^{-1}([1;+\infty[)$$

La partie A est donc une intersection d'images réciproques de fermés par des applications continues. On conclut

2. Soit $f \in A$ avec $||f||_{\infty} \leq 1$. On a

$$1 \le \int_0^1 f(t) \, dt \le ||f||_\infty \le 1 \implies \int_0^1 f(t) \, dt = 1 \implies \int_0^1 (1 - f(t)) \, dt = 0$$

La fonction $t \mapsto 1 - f(t)$ est continue positive d'intégrale nulle donc nulle. Il s'ensuit que f est constante égale à 1 ce qui contredit son annulation en 0. Ainsi

$$\forall f \in A \qquad ||f||_{\infty} > 1$$

3. D'après ce qui précède, on a clairement $d(0,A)\geqslant 1$. Pour n entier avec $n\geqslant 2$, on pose f_n affine par morceaux avec $f_n(t)=n^2t/(n-1)$ pour $t\in \left[0;\frac{1}{n}\right]$ puis constante sur $\left[\frac{1}{n};1\right]$. On

trouve
$$\int_0^1 f_n(t) dt \ge 1$$
 et $||f_n||_{\infty} = 1 + \frac{1}{n} \xrightarrow[n \to \infty]{} 1$. On conclut

$$d(0,A) = 1$$

Exercice 7 (**)

Soit X un ensemble et $E = \mathscr{B}(X,\mathbb{R})$ l'ensemble des applications bornées de X dans \mathbb{R} muni de $\|\cdot\|_{\infty}$. Soit L une forme linéaire sur E positive, c'est-à-dire

$$\forall f \in \mathbf{E} \qquad f \geqslant 0 \quad \Longrightarrow \quad \mathbf{L}(f) \geqslant 0$$

- 1. Montrer
- $\forall (f,g) \in \mathbf{E}^2 \qquad f \leqslant g \quad \Longrightarrow \quad \mathbf{L}(f) \leqslant \mathbf{L}(g)$
- 2. En déduire que L est une application continue.
- 3. Montrer

$$L \neq 0 \iff L(1) \neq 0$$

4. Établir

$$\forall (f,g) \in E^2$$
 $L(fg)^2 \leqslant L(f^2)L(g^2)$

Corrigé: 1. Soit $(f,g) \in E^2$ avec $f \leq g$. On a $g-f \geqslant 0$ et par positivité de L, il vient

$$L(g) - L(f) = L(g - f) \geqslant 0$$

Ainsi

$$\forall (f,g) \in \mathcal{E}^2 \qquad f \leqslant g \quad \Longrightarrow \quad \mathcal{L}(f) \leqslant \mathcal{L}(g)$$

2. Soit $f \in E$. On a

$$-\|f\|_{\infty} \leqslant f \leqslant \|f\|_{\infty}$$

D'où
$$-\|f\|_{\infty} L(1) = L(-\|f\|_{\infty}) \leqslant L(f) \leqslant L(\|f\|_{\infty}) = \|f\|_{\infty} L(1)$$

Ainsi

$$\forall f \in \mathcal{E}$$
 $|\mathcal{L}(f)| \leq ||f||_{\infty} \mathcal{L}(1)$

d'où le caractère lipschitzien en zéro et donc la continuité de f.

3. Le sens indirect est immédiat et le sens direct vient par contraposition avec l'inégalité précédente. Ainsi

$$\boxed{ L \neq 0 \iff L(1) \neq 0 }$$

4. Soit $(f,g) \in E^2$. On pose

$$\forall t \in \mathbb{R} \qquad \varphi(t) = \mathcal{L}((tf+g)^2) = t^2 \mathcal{L}(f^2) + 2t \mathcal{L}(fg) + \mathcal{L}(g^2)$$

On a $(tf+g)^2 \ge 0$ pour tout t réel d'où la positivité de φ d'après la positivité de L. Si $L(f^2) > 0$, la fonction φ est un trinôme à valeurs positives dont le discriminant ne peut être strictement positif. Ainsi, on a

$$L(fg)^2 \leqslant L(f^2)L(g^2)$$

Si $L(f^2) = 0$, la fonction $t \mapsto \varphi(t) = 2tL(fg) + L(g^2)$ est affine de signe constant positif ce qui n'est possible que si L(fg) = 0 et l'inégalité est donc encore vraie. Finalement

$$\forall (f,g) \in \mathcal{E}^2$$
 $\mathcal{L}(fg)^2 \leqslant \mathcal{L}(f^2)\mathcal{L}(g^2)$

Remarque: Il s'agit exactement de la preuve de l'inégalité de Cauchy-Schwarz ce qui était totalement prévisible puisque l'application $(f,g) \mapsto L(fg)$ est une forme bilinéaire symétrique positive sur E.

Exercice 8 (****)

L'ensemble $\mathscr{D}_n^s(\mathbb{C})$ des matrices diagonalisables de $\mathscr{M}_n(\mathbb{C})$ à valeurs propres simples est dense dans $\mathscr{M}_n(\mathbb{C})$. Déterminer l'intérieur de $\mathscr{D}_n^s(\mathbb{C})$.

Corrigé : Soit $M \in \mathscr{D}_{n}^{s}(\mathbb{C})$. Supposons qu'il existe $(M_{p})_{p} \in (E \setminus \mathscr{D}_{n}^{s}(\mathbb{C}))^{\mathbb{N}}$ tel que $M_{p} \xrightarrow[p \to +\infty]{} M$. Notons $Sp(M) = \{\lambda_{1}, \ldots, \lambda_{n}\}$ valeurs deux à deux distinctes. Soit $i \in [1; n]$. Supposons que pour tout p entier, on a ait $Sp(M_{p}) \cap D(\lambda_{i}, \delta) = \emptyset$ avec $\delta > 0$. Notant $\chi_{M_{p}}(X) = \prod_{k=1}^{n} (X - \mu_{k,p})$, on aurait $|\mu_{k,p} - \lambda_{i}| \ge \delta$ pour tout $k \in [1; n]$ d'où

$$\forall p \in \mathbb{N} \qquad \left| \chi_{\mathcal{M}_p}(\lambda_i) \right| \geqslant \delta^n$$

Or, par continuité du déterminant, on a

$$\chi_{\mathcal{M}_p}(\lambda_i) = \det(\lambda_i \mathcal{I}_n - \mathcal{M}_p) \xrightarrow[p \to +\infty]{} \det(\lambda_i \mathcal{I}_n - \mathcal{M}) = \chi_{\mathcal{M}}(\lambda_i) = 0$$

ce qui contredit l'inégalité précédente. Ainsi

$$\exists p_0 \in \mathbb{N} \mid \forall p \geqslant p_0 \quad \forall i \in [1; n] \quad \operatorname{Sp}(M_p) \cap D(\lambda_i, \delta) \neq \emptyset$$

On choisit alors $\delta = \min_{i \neq j} \frac{|\lambda_i - \lambda_j|}{2}$. Il s'ensuit que les disques $D(\lambda_i, \delta)$ sont deux à deux disjoints et par conséquent, le spectre de M_p pour $p \geqslant p_0$ est formé de n valeurs distinctes ce qui est impossible par hypothèse. On en déduit

$$M \notin \overline{E \setminus \mathscr{D}_n^s(\mathbb{C})} = E \setminus (\mathscr{D}_n^s(\mathbb{C}))^{\circ}$$

S'ensuit l'inclusion $\mathscr{D}_n^s(\mathbb{C})\subset (\mathscr{D}_n^s(\mathbb{C}))^\circ$ et l'inclusion réciproque est immédiate. Ainsi

$$\mathscr{D}_n^s(\mathbb{C}) = (\mathscr{D}_n^s(\mathbb{C}))^{\circ}$$

Variante : On peut aussi utiliser le résultant (voir feuille 15 exercice 6). Soit $M \in \mathcal{M}_n(\mathbb{C})$. On a

 $M \in \mathcal{D}_n^s(\mathbb{C}) \iff \chi_M \text{ scind\'e à racines simples } \iff \chi_M \wedge \chi_M' = 1$

Posons

$$\varphi \colon \begin{cases} \mathscr{M}_n(\mathbb{C}) \longrightarrow \mathbb{C} \\ \mathrm{M} \longmapsto \mathrm{Res}[\chi_{\mathrm{M}}, \chi_{\mathrm{M}}'] \end{cases}$$

On en déduit

$$\mathscr{D}_n^s(\mathbb{C}) = \varphi^{-1}(\mathbb{C}^*)$$

Or, les coefficients de χ_{M} sont polynomiaux en les coefficients de M et ceci vaut également pour χ'_{M} et par suite, le résultant $\mathrm{Res}[\chi_{\mathrm{M}},\chi'_{\mathrm{M}}]$ est polynomial en les coefficients de M d'où la continuité de φ . Ainsi, l'ensemble $\mathscr{D}_n^s(\mathbb{C})$ est image réciproque d'un ouvert par une application continue d'où

L'ensemble
$$\mathcal{D}_n^s(\mathbb{C})$$
 est ouvert.

Exercice 9 (****)

Soit E un K-evn. Montrer que les seules parties ouvertes et fermées de E sont ∅ et E lui-même.

Corrigé : Soit A une partie ouverte et fermée et non vide de E. Supposons $A \neq E$. Soit $a \in A$ et $b \notin A$. On pose

$$\forall t \in \mathbb{R}$$
 $\varphi(t) = a + t(b - a)$ et $I = \{t \in [0, 1] \mid \varphi(t) \in A\}$

L'ensemble I est une partie non vide car $0 \in I$ et majorée par 1 donc admet une borne supérieure finie $\alpha \in [0;1]$. Par caractérisation séquentielle, il existe $(\alpha_n)_n \in I^{\mathbb{N}}$ telle que $\alpha_n \xrightarrow[n \to \infty]{} \alpha$. L'application φ est continue car ||b-a||-lipschitzienne et par continuité, on a

$$\varphi(\alpha_n) \xrightarrow[n \to \infty]{} \varphi(\alpha) \in \bar{A} = A$$

Par ailleurs, l'ensemble A est ouvert donc il existe r>0 tel que $B(\varphi(\alpha),r)\subset A$. Il s'ensuit

$$\varphi\left(\alpha + \frac{r}{2\|b - a\|}\right) = \varphi(\alpha) + \frac{r}{2} \frac{b - a}{\|b - a\|} \in \mathcal{B}(\varphi(\alpha), r) \subset \mathcal{A} \quad \text{et} \quad \alpha + \frac{r}{2\|b - a\|} > \alpha$$

ce qui est absurde par définition de α en tant que borne supérieure de I. L'hypothèse qu'il existe une partie A ouverte et fermée non vide de E et distincte de E est donc fausse. On conclut

Les parties ouvertes et fermés de E sont
$$\varnothing$$
 et E lui-même.

Variantes: (a) On a $\varphi(1) = b \notin A$ d'où $\alpha < 1$ et par définition de α , on a $\varphi(t) \notin A$ pour tout $t \in]\alpha;1]$. Comme $E \setminus A$ est fermé, considérant une suite $(\beta_n)_n \in]\alpha;1]^{\mathbb{N}}$ avec $\beta_n \xrightarrow[n \to \infty]{} \alpha$, il vient par continuité

$$\varphi(\beta_n) \xrightarrow[n \to \infty]{} \varphi(\alpha) \in E \setminus A$$

ce qui contredit $\varphi(\alpha) \in A$.

(b) On montre que $\mathbb{1}_A$ est continue. Si $x \in A$, alors il existe U ouvert $\subset A$ tel que $\mathbb{1}_A(y) = 1$ pour tout $y \in U$ d'où la continuité. Si $x \notin A$, on fait de même puisque $E \setminus A$ est ouvert. Ainsi, on a $t \mapsto \mathbb{1}_A(xt + (1-t)y)$ continue avec $x \in A$ et $y \notin A$ et on obtient une contradiction.