Feuille d'exercices n°28

Exercice 1 (*)

Soit $E = \mathbb{R}^2$. Représenter les boules unités fermées pour les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$.

Exercice 2 (*)

Dans \mathbb{R}^n , montrer que les pavés ouverts sont des ouverts et que les pavés fermés sont des fermés.

Exercice 3 (**)

Soit E un \mathbb{K} -evn et A, B des parties de E avec A ou B ouvert. Montrer que A + B est un ouvert.

Exercice 4 (*)

Soit A une partie de E. Déterminer $\partial(E \setminus A)$.

Exercice 5 (**)

Déterminer l'intérieur d'une sphère.

Exercice 6 (**)

Soit E un K-evn et A, B des parties de E.

- 1. Si $A \subset B$, comparer \mathring{A} avec \mathring{B} et \bar{A} avec \bar{B} .
- 2. Comparer $(A \cup B)^{\circ}$ avec $\mathring{A} \cup \mathring{B}$ puis $(A \cap B)^{\circ}$ avec $\mathring{A} \cap \mathring{B}$.
- 3. Même question pour l'adhérence.

Exercice 7 (**)

Soit E un K-evn et F un fermé de E.

- 1. Montrer que F peut s'écrire comme image réciproque d'un fermé par une application continue de E dans \mathbb{R} .
- 2. En déduire que F peut s'écrire comme intersection décroissante d'ouverts de E.

Exercice 8 (**)

Soit E un K-evn et F un sev de E.

- 1. Montrer que \bar{F} est un sev de E.
- 2. Montrer qu'un hyperplan est soit dense, soit fermé.

Exercice 9 (**)

Montrer la continuité de l'application qui à $M \in GL_n(\mathbb{K})$ associe son inverse.

Exercice 10 (**)

Soit $E = \mathscr{C}^0([0;1], \mathbb{R}).$

- 1. Déterminer une norme sur E telle que le produit dans E soit continu.
- 2. Pour E muni de $\|\cdot\|_1$, le produit est-il continu?

Exercice 11 (**)

L'application définie de $\mathcal{M}_n(\mathbb{C})$ dans $\mathbb{C}[X]$ par $M \mapsto \pi_M$ est-elle continue?

Exercice 12 (**)

On pose

$$A = \left\{ \frac{1}{n}, n \in \mathbb{Z}^* \right\} \qquad B = A \cup \{0\}$$

Discuter de la nature topologique des ensembles A et B.

Exercice 13 (**)

Soit E un K-evn.

- 1. Soit $a \in E$ et r > 0. Montrer Vect (B(a, r)) = E.
- 2. Montrer que tout sev strict de E est d'intérieur vide.

Exercice 14 (*)

Étudier la continuité éventuelle des applications suivantes :

1.
$$f(x,y) = \begin{cases} \frac{\sin(xy)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$
 2.
$$f(x,y) = \begin{cases} \frac{e^x - e^y}{x - y} & \text{si } x \neq y \\ e^x & \text{sinon} \end{cases}$$

2.
$$f(x,y) = \begin{cases} \frac{e^x - e^y}{x - y} & \text{si } x \neq y \\ e^x & \text{sinon} \end{cases}$$

Exercice 15 (*)

On pose

$$\forall (x,y) \in \mathbb{R}^2 \qquad f(x,y) = x^2 - xy + y^2$$

Étudier si f admet une limite pour $||(x,y)|| \to +\infty$.

Exercice 16 (*)

On pose

$$\forall (x,y) \in \mathbb{R}^2$$
 $f(x,y) = (x^2 - y^2)^2 - y^3 + xy$

2

Étudier si f admet une limite pour $||(x,y)|| \to +\infty$.