Feuille d'exercices n°29

Exercice 1 (**)

Soit E un K-ev normé, $a \in E$ et r > 0. Montrer $\overline{B(a,r)} = B_f(a,r)$.

Exercice 2 (**)

Soit E un \mathbb{K} -evn et $A \subset E$.

1. Montrer

A fermé
$$\iff \partial A \subset A$$

2. Montrer

A ouvert
$$\iff$$
 A \cap ∂ A = \varnothing

Exercice 3 (**)

Soit E un K-evn et A, B deux parties non vides de E. On définit $d(A, B) = \inf_{(x,y) \in A \times B} ||x - y||$.

Montrer

$$d(A,B)=d(\bar{A},\bar{B})$$

Exercice 4 (***)

Soient A et B deux fermés disjoints de E un K-evn.

- 1. Trouver $f \in \mathscr{C}(\mathbf{E}, \mathbb{R})$ tel que $f_{|_{\mathbf{A}}} = 0$ et $f_{|_{\mathbf{B}}} = 1$.
- 2. En déduire qu'il existe des ouverts U et V disjoints tels que $A \subset U$ et $B \subset V$.

Exercice 5 (**)

Soit E un K-evn et A une partie convexe de E. Montrer que Ā et Å sont convexes.

Exercice 6 (***)

Montrer qu'une forme linéaire est continue si et seulement si son noyau est fermé.

Exercice 7 (***)

Soit $E = \{(u_n)_n \in \mathbb{K}^{\mathbb{N}} \mid \sum |u_n| \text{ converge}\}$ muni de la norme $\|\cdot\|_1$ définie par $\|u\|_1 = \sum_{n=0}^{+\infty} |u_n|$ pour $u \in E$ et $\varphi \in \mathscr{L}_c(E, \mathbb{R})$. Montrer qu'il existe un unique $(y_n)_n \in \mathbb{K}^{\mathbb{N}}$ bornée tel que $\varphi(u) = \sum_{n=0}^{+\infty} u_n y_n$ pour tout $u \in E$.

Exercice 8 (**)

- 1. Montrer que $\mathrm{GL}_n(\mathbb{K})$ est un ouvert dense de $\mathscr{M}_n(\mathbb{K})$.
- 2. Montrer

$$\forall (A, B) \in \mathscr{M}_n(\mathbb{K}) \qquad \chi_{AB} = \chi_{BA}$$

- 3. Montrer $\forall (A, B) \in \mathcal{M}_n(\mathbb{K})$ $\operatorname{Com}(AB) = (\operatorname{Com} A) (\operatorname{Com} B)$

Exercice 9 (***)

Pour $n \ge 2$, on pose $\Delta = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid \forall i \ne j \quad x_i \ne x_j\}$

Déterminer $\bar{\Delta}$ et $\mathring{\Delta}$.

Exercice 10 (***)

- 1. Montrer que l'ensemble $\mathcal{D}_n^s(\mathbb{C})$ des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ à valeurs propres simples est dense dans $\mathcal{M}_n(\mathbb{C})$.
- 2. En déduire une nouvelle démonstration du théorème de Cayley-Hamilton.

Exercice 11 (***)

Soit E un \mathbb{K} -evn.

1. Montrer que pour U, V ouverts, on a

$$\bar{\mathbf{U}} = \bar{\mathbf{V}} = \mathbf{E} \implies \overline{\mathbf{U} \cap \mathbf{V}} = \mathbf{E}$$

2. En déduire que pour F, G fermés, on a

$$\mathring{F} = \mathring{G} = \emptyset \implies (F \cup G)^{\circ} = \emptyset$$

Exercice 12 (***)

Soit E un evn et A \subset E. Un point $x \in$ A est dit *isolé* s'il existe $\varepsilon > 0$ tel que B $(x, \varepsilon) \cap$ A $\setminus \{x\} = \emptyset$.

$$\mathscr{S} = \{ \mathbf{M} \in \mathscr{M}_n(\mathbb{R}) \mid \mathbf{M}^2 = \mathbf{I}_n \}$$

- 1. Montrer que I_n est un point isolé de \mathscr{S} .
- 2. Déterminer tous les points isolés de \mathscr{S} .

Exercice 13 (***)

Soit n entier non nul et $p \in [0; n]$. On note R_p l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ de rang $\geqslant p$. Montrer que R_p est un ouvert de $\mathcal{M}_n(\mathbb{K})$.

Exercice 14 (***)

Soit E un K-evn et $(x_n)_n \in E^{\mathbb{N}}$. Montrer que l'ensemble des valeurs d'adhérence de $(x_n)_n$ est

$$\Lambda = \bigcap_{n \in \mathbb{N}} \overline{X_n} \quad \text{avec} \quad X_n = \{x_k, k \geqslant n\}$$

Exercice 15 (***)

Soient E, F deux K-evn et $f: E \to F$. Montrer:

$$f$$
 continue $\iff \forall \mathbf{B} \subset \mathbf{F} \qquad \overline{f^{-1}(\mathbf{B})} \subset f^{-1}\left(\bar{\mathbf{B}}\right)$

Peut-on remplacer l'inclusion par une égalité?