Feuille d'exercices n°30

Exercice 1 (***)

Soit $E = \mathbb{R}[X]$. On pose $\mathcal{O} = \{P \in E \mid P(0) \neq 0\}$ et on note

$$\forall \mathbf{P} \in \mathbf{E} \qquad \mathbf{N}_1(\mathbf{P}) = \sup_{t \in [\,0\,;1\,]} |\mathbf{P}(t)| \qquad \mathbf{N}_2(\mathbf{P}) = \sup_{t \in [\,1\,;2\,]} |\mathbf{P}(t)|$$

Déterminer la nature topologique de \mathcal{O} pour les normes N_1 et N_2 .

Indications: Étudier la continuer de l'application $P \in E \mapsto P(0)$ puis considérer une suite simple à valeurs dans $E \setminus \mathcal{O}$ pour discuter selon la norme N_1 . Considérer la suite $(P_n)_n$ avec $P_n = (1 - X/2)^n$ et $(1 - P_n)_n$ pour discuter selon la norme N_2 .

Exercice 2 (***)

Montrer qu'une somme de fermés n'est pas nécessairement fermée.

Indications: Chercher un contre-exemple dans \mathbb{R}^2 .

Exercice 3 (***)

Soit n entier non nul et Ω_n l'ensemble des polynômes de $\mathbb{R}_n[X]$ scindé à racines simples de degré égal à n. Montrer que Ω_n est un ouvert.

Indications: Pour $P \in \Omega_n$, notant $\alpha_1 < \ldots < \alpha_n$ les racines de P, considérer β_0, \ldots, β_n tels que $\beta_0 < \alpha_1 < \beta_1 < \ldots < \alpha_n < \beta_n$ puis $f : Q \mapsto (Q(\beta_0), \ldots, Q(\beta_n))$ et remarquer que f linéaire sur un espace de dimension finie.

Exercice 4 (***)

Soit $E = \mathbb{R}[X]$. Déterminer deux normes sur E, une pour laquelle l'endomorphisme de dérivation est continue et l'autre pour laquelle il ne l'est pas.

Indications: Étudier le comportement de D vis-à-vis des normes classiques puis considérer une norme faisant intervenir tous les ordres de dérivation.

Exercice 5 (****)

Soit E un \mathbb{K} -evn et A une partie non vide bornée de E. On note $\delta(\mathbf{A}) = \sup_{(x,y) \in \mathbf{A}^2} \|x - y\|$. Montrer

$$\delta(A) = \delta(\bar{A}) = \delta(\partial A)$$

Indications: Montrer que \bar{A} est bornée puis $\delta(A) = \delta(\bar{A})$ par double inégalité. Pour $\delta(\bar{A}) \leq \delta(A)$, utiliser une caractérisation séquentielle des points adhérents. Puis, pour a, b distincts dans A, considérer $\varphi: t \mapsto a + t(b-a)$ et $I = \{t \in R \mid \varphi(t) \in A\}$. Montrer que I est une partie non vide, bornée de \mathbb{R} puis, notant $t_0 = \text{Inf } I$ et $t_1 = \text{Sup } I$, établir que $\varphi(t_0)$ et $\varphi(t_1)$ sont sur la frontière. Conclure.

Exercice 6 (***)

Soit $\mathcal{E} = \mathscr{C}^0(\left[0;1\right],\mathbb{R})$ muni de $\|\cdot\|_{\infty}$ et $\mathcal{A} = \left\{f \in \mathcal{E} \mid f(0) = 0 \quad \text{et} \quad \int_0^1 f(t) \, \mathrm{d}t \geqslant 1\right\}$.

- 1. Montrer que A est une partie fermée de E.
- 2. Montrer que

$$\forall f \in A \qquad ||f||_{\infty} > 1$$

3. Calculer d(0, A).

Indications: 1. Écrire A comme intersection d'images réciproques.

- 2. Procéder par l'absurde.
- 3. Considérer la fonction continue f_n définie par $f_n(t) = n^2 t/(n-1)$ pour $t \in \left[0; \frac{1}{n}\right]$ et constante sur $\left[\frac{1}{n}; 1\right]$.

Exercice 7 (**)

Soit X un ensemble et $E = \mathcal{B}(X, \mathbb{R})$ l'ensemble des applications bornées de X dans \mathbb{R} muni de $\|\cdot\|_{\infty}$. Soit L une forme linéaire sur E positive, c'est-à-dire

$$\forall f \in \mathbf{E} \qquad f \geqslant 0 \quad \Longrightarrow \quad \mathbf{L}(f) \geqslant 0$$

- 1. Montrer
- $\forall (f,g) \in E^2 \qquad f \leqslant g \implies L(f) \leqslant L(g)$
- 2. En déduire que L est une application continue.
- 3. Montrer

$$L \neq 0 \iff L(1) \neq 0$$

4. Établir

$$\forall (f,g) \in E^2$$
 $L(fg)^2 \leqslant L(f^2)L(g^2)$

Indications : 1. Utiliser linéarité et positivité de L.

- 2. Encadrer f entre deux fonctions constantes.
- 4. Cloner la preuve habituelle de l'inégalité de Cauchy-Schwarz.

Exercice 8 (****)

L'ensemble $\mathscr{D}_n^s(\mathbb{C})$ des matrices diagonalisables de $\mathscr{M}_n(\mathbb{C})$ à valeurs propres simples est dense dans $\mathscr{M}_n(\mathbb{C})$. Déterminer l'intérieur de $\mathscr{D}_n^s(\mathbb{C})$.

Indications: Pour $M \in \mathcal{D}_n^s(\mathbb{C})$ avec $Sp(M) = \{\lambda_1, \dots, \lambda_n\}$, considérer $(M_p)_p \in (E \setminus \mathcal{D}_n^s(\mathbb{C}))^{\mathbb{N}}$ telle que $M_p \xrightarrow[p \to +\infty]{} M$. Pour $\delta > 0$, montrer que $Sp(M_p) \cap D(\lambda_i, \delta) \neq \emptyset$ pour tout $i \in [1; n]$ à partir d'un certain rang. Avec un choix approprié de δ , obtenir une contradiction.

Exercice 9 (****)

Soit E un K-evn. Montrer que les seules parties ouvertes et fermées de E sont ∅ et E lui-même.

Indications: Considérer A une partie ouverte et fermée non vide de E et différente de E puis pour $a \in A$ et $b \notin A$, étudier l'ensemble I défini par

$$\mathbf{I} = \{t \in [\,0\,;1\,] \mid \varphi(t) \in \mathbf{A}\}$$

avec $\varphi(t) = a + t(b-1)$ pour t réel.