Feuille d'exercices n°22

Dans ce qui suit, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Exercice 1 (*)

Déterminer si les matrices suivantes sont diagonalisables :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Corrigé : 1. Si A était diagonalisable, elle serait semblable à I_3 donc égale à I_3 ce qui n'est pas le cas donc

La matrice A n'est pas diagonalisable.

2. La matrice $B \in \mathcal{M}_3(\mathbb{R})$ admet 3 valeurs propres distinctes donc par condition suffisante

La matrice B est diagonalisble.

3. On a
$$\operatorname{Sp}(C) = \{0, 1\}$$
 avec $m_0(C) = 1, m_1(C) = 2$

Puis
$$C - I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies \operatorname{rg}(C - I_3) = 1$$

Le théorème du rang donne

$$\dim E_1(C) = \dim Ker(C - I_3) = 3 - rg(C - I_3) = 2 = m_1(C)$$

et

$$1 \leq \dim E_0(C) \leq m_0(C) = 1$$

D'après le théorème fondamental de diagonalisation, on conclut

La matrice C est diagonalisable.

4. On a
$$\operatorname{Sp}(D) = \{0, 1\}$$
 avec $m_0(D) = 2$, $m_1(D) = 1$

On a clairement rg D = 2 d'où dim $E_0(D) = \dim \operatorname{Ker} D = 1 \neq m_0(D)$. On conclut

La matrice D n'est pas diagonalisable.

Exercice 2 (*)

Les matrices suivantes sont-elles trigonalisables dans $\mathcal{M}_3(\mathbb{R})$? diagonalisables dans $\mathcal{M}_3(\mathbb{R})$? Si oui, préciser la matrice de passage de la base canonique vers une base de vecteurs propres.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ -4 & 2 & 5 \end{pmatrix}, \qquad D = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{pmatrix}$$

Corrigé : Avec successivement $C_1 \leftarrow C_1 + C_2$, on a

$$\chi_{A} = \begin{vmatrix} X & -1 & 0 \\ -1 & X & -1 \\ -1 & -1 & X - 1 \end{vmatrix} = (X+1) \begin{vmatrix} 1 & -1 & 0 \\ -1 & X & -1 \\ 0 & -1 & X - 1 \end{vmatrix} = (X+1) \begin{vmatrix} 1 & -1 & 0 \\ 0 & X - 1 & -1 \\ 0 & -1 & X - 1 \end{vmatrix}$$

Ainsi

$$\chi_{A} = (X+1)X(X-2)$$

La matrice $A \in \mathcal{M}_3(\mathbb{R})$ admet 3 valeurs propres distinctes donc est diagonalisable et a fortiori trigonalisable. On cherche ensuite des bases des sous-espaces propres. On a

$$AX = 0 \iff \begin{cases} y = 0 \\ x + z = 0 \end{cases} \iff (x, y, z) = x(1, 0, -1)$$

$$(A + I_3)X = 0 \iff \begin{cases} x + y = 0 \\ x + y + z = 0 \end{cases} \iff (x, y, z) = x(1, -1, 0)$$

$$(A - 2I_3)X = 0 \iff \begin{cases} -2x + y = 0 \\ x + y - z = 0 \end{cases} \iff (x, y, z) = x(1, 2, 3)$$

Ainsi

$$P^{-1}AP = diag(0, -1, 2)$$
 avec $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ -1 & 0 & 3 \end{pmatrix}$

En développant selon la première colonne,

$$\chi_{B} = \begin{vmatrix} X & 0 & -1 \\ -2 & X & -1 \\ 0 & -2 & X \end{vmatrix} = X(X^{2} - 2) - 4 = X^{3} - 2X - 4 = (X - 2)(X^{2} + 2X + 2)$$

Le polynôme caractéristique $\chi_{\rm B}$ n'est pas scindé sur $\mathbb R$ d'où

La matrice B n'est pas trigonalisable dans $\mathcal{M}_3(\mathbb{R})$.

On a

$$\chi_{C} = \begin{vmatrix} X - 1 & -2 & 0 \\ -2 & X - 4 & 0 \\ 4 & -2 & X - 5 \end{vmatrix} = (X - 5) [(X - 1)(X - 4) - 4] = X(X - 5)^{2}$$

On a $(C - 5I_3)X = 0 \iff 2x - y = 0 \iff (x, y, z) = x(1, 2, 0) + z(0, 0, 1)$

On a dim $E_5(C) = m_5(C)$ et dim $E_0(C) = m_0(C)$ (car multiplicité égale à 1) avec χ_C scindé sur \mathbb{R} ce qui prouve que la matrice C est diagonalisable. Puis

$$CX = 0 \iff \begin{cases} x + 2y = 0 \\ -4x + 2y + 5z = 0 \end{cases} \iff (x, y, z) = y(2, 1, 2)$$

Ainsi

$$P^{-1}CP = diag(5, 5, 0)$$
 avec $P = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}$

Avec successivement $C_1 \leftarrow C_1 + C_3$ puis $L_3 \leftarrow L_3 - L_1$, on obtient

$$\chi_{\mathrm{D}} = \begin{vmatrix} X & -1 & -1 \\ -1 & X - 2 & 1 \\ 1 & -1 & X - 2 \end{vmatrix} = (X - 1) \begin{vmatrix} 1 & -1 & -1 \\ 0 & X - 2 & -1 \\ 1 & -1 & X - 2 \end{vmatrix} = (X - 1) \begin{vmatrix} 1 & -1 & -1 \\ 0 & X - 2 & -1 \\ 0 & 0 & X - 1 \end{vmatrix}$$

d'où

$$\chi_{\rm D} = ({\rm X} - 1)^2 ({\rm X} - 2)$$

$$(D - I_3)X = 0 \iff \begin{cases} x - z = 0 \\ y = 0 \end{cases} \iff (x, y, z) = x(1, 0, 1)$$

On en déduit dim $E_1(D) = 1 < 2 = m_1(D)$. Comme χ_D est scindé sur \mathbb{R} , on conclut

La matrice D est trigonalisable mais non diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

Exercice 3 (*)

Montrer que la matrice J de $\mathcal{M}_n(\mathbb{R})$ constituée de 1 est diagonalisable et préciser une matrice de passage associée.

Corrigé: Notons $E = \mathbb{R}^n$ et $U^{\top} = (1 \dots 1)$. On a clairement $\operatorname{rg} J = 1$ et $\operatorname{Im} J = \operatorname{Vect}(U)$. Par suite, on a $0 \in \operatorname{Sp}(J)$ et $\dim E_0(J) = n - 1$. Puis JU = nU donc $n \in \operatorname{Sp}(J)$. Or, comme $E_0(J)$ et $E_n(J)$ sont en somme directe, on a

$$\dim E \geqslant \dim E_0(J) \oplus E_n(J) = \dim E_0(J) + \dim E_n(J) \geqslant n - 1 + 1 = n = \dim E$$

Par suite

$$E_0(J) \oplus E_n(J) = E$$

Ainsi

Clairement, la famille (U) est une base de la droite vectorielle $E_n(J)$. Puis

$$X \in \text{Ker } J \iff \sum_{i=1}^{n} x_i = 0 \iff x_1 = \sum_{i=2}^{n} x_i$$

Ainsi

La famille $(-e_1 + e_i)_{i \in [\![2]; n]\!]}$ est une base de Ker J.

Par suite, une matrice de passage pour diagonaliser J est donnée par

$$P = \begin{pmatrix} -1 & \dots & -1 & 1 \\ 1 & 0 & \dots & 0 & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & 1 \end{pmatrix}$$

Variantes: (a) On a (voir exemple du cours de Réduction)

$$\chi_{\mathbf{J}} = (\mathbf{X} - n)\mathbf{X}^{n-1}$$

Par suite

$$m_n(A) = \dim E_n(A)$$
 et $m_0(A) = \dim E_0(A)$

et χ_J scindé dans $\mathbb{R}[X]$. On conclut que J est diagonalisable.

(b) Le calcul donne $J^2 = nJ$ donc P = X(X - n) est annulateur de J et P scindé à racines simples donc J est diagonalisable.

Exercice 4 (**)

Soit $n \ge 2$.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec rg (A) = 1. Déterminer une condition nécessaire et suffisante pour que A soit diagonalisable.
- 2. Existe-t-il une base de $\mathcal{M}_n(\mathbb{K})$ formée de matrices diagonalisables?

Corrigé : 1. Soit $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé. Dans une base obtenue par complétion de Ker u, on a $\max_{\mathcal{L}} u = \left(\frac{0_{n-1} \mid *}{0 \mid \alpha} \right)$ avec $\alpha = \operatorname{Tr}(u) = \operatorname{Tr}(A)$. Si $\operatorname{Tr}(A) = 0$, alors $\operatorname{Sp}(A) = \{0\}$ et A n'est pas nulle donc pas semblable à la matrice nulle donc pas diagonalisable (ou aussi $m_0(A) = n > n - 1 = \dim E_0(A)$). Si $\operatorname{Tr}(A) \neq 0$, on a

$$\dim \mathcal{E}_0(\mathcal{A}) = n - 1$$
 et $\dim \mathcal{E}_{\mathrm{Tr}(\mathcal{A})}(\mathcal{A}) \geqslant 1 \implies \mathbb{K}^n = \mathcal{E}_0(\mathcal{A}) \oplus \mathcal{E}_{\mathrm{Tr}(\mathcal{A})}(\mathcal{A})$

ou aussi

$$m_{\operatorname{Tr}(\mathbf{A})}(\mathbf{A}) = 1 = \dim \mathcal{E}_{\operatorname{Tr}(\mathbf{A})}(\mathbf{A}) \qquad m_0(\mathbf{A}) = n-1 = \dim \mathcal{E}_0(\mathbf{A}) \quad \text{et} \quad \chi_{\mathbf{A}} \text{ scind\'e sur } \mathbb{K}[\mathbf{X}]$$

Ainsi

A diagonalisable
$$\iff$$
 Tr (A) \neq 0

Remarque: On a $X^{n-1}|\chi_A$ d'où $\chi_A = X^{n-1}(X - \operatorname{Tr}(A))$. On peut conclure comme précédemment.

Variante: Il existe une colonne X de A non nulle. Toutes les autres colonnes sont colinéaires à celle-ci d'où $A = XY^{\top}$ avec $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$. On a $A = (x_i y_j)$. Puis $A^2 = X(Y^{\top}X)Y^{\top} = \operatorname{Tr}(A)A$. Ainsi, le polynôme $P = X^2 - \operatorname{Tr}(A)X$ est annulateur de A. Comme A n'est pas une homothétie, on en déduit que $\pi_A = X(X - \operatorname{Tr}(A))$. La matrice A est diagonalisable si et seulement si π_A est scindé à racines simples d'où

2. La famille $\mathscr{L} = (E_{i,j} + E_{j,j})_{1 \leq i,j \leq n}$ est constituée de matrices de rang 1 de trace non nulle, est génératrice et de cardinal égal à n^2 . En effet, notant $F = \text{Vect}(\mathscr{L})$, on a

$$\forall (i,j) \in [1; n]^2$$
 $E_{j,j} = \frac{1}{2} 2E_{j,j} \in F$ et $E_{i,j} = (E_{i,j} + E_{j,j}) - E_{j,j} \in F$

ce qui prouve $\mathcal{M}_n(\mathbb{K}) \subset F$ et $F \subset \mathcal{M}_n(\mathbb{K})$ d'où l'égalité. D'après le résultat de la question précédente, on conclut

Il existe une base de $\mathcal{M}_n(\mathbb{K})$ formée de matrices diagonalisables.

Exercice 5 (**)

Soit $n \geq 2$. Diagonaliser la matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ avec

$$a_{i,j} = \begin{cases} 1 & \text{si } i = 1 \text{ ou } j = 1 \text{ ou } j = i \\ 0 & \text{sinon} \end{cases}$$

$$\chi_{A} = \begin{vmatrix} X - 1 & -1 & \dots & -1 \\ -1 & X - 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -1 & 0 & \dots & 0 & X - 1 \end{vmatrix}$$

On réalise l'opération $L_1 \leftarrow L_1 + \frac{1}{X-1} \sum_{k=2}^n L_k$ et on obtient

$$\chi_{A} = \begin{vmatrix} X - 1 - \frac{n-1}{X-1} & 0 & \dots & 0 \\ -1 & X - 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -1 & 0 & \dots & 0 & X - 1 \end{vmatrix}$$
$$= \left(X - 1 - \frac{n-1}{X-1}\right) (X - 1)^{n-1} = (X^{2} - 2X - n + 2)(X - 1)^{n-2}$$

Ainsi, on a χ_A scindé dans $\mathbb{R}[X]$ avec $m_{1\pm\sqrt{n-1}}(A)=1$ et $m_1(A)=n-2$. Or, on observe

$$rg(A - I_n) = rg\begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix} = 2$$

et d'après le théorème du rang, il s'ensuit $m_1(A) = \dim E_1(A)$. On conclut

$$\chi_{A} = (X-1)^{n-2}(X^2 - 2X - n + 2)$$
 et A semblable à diag $(1 + \sqrt{n-1}, 1 - \sqrt{n-1}, I_{n-2})$

Variantes : (a) Notant $P_n = \chi_A$, on peut aussi développer sur la dernière colonne

$$P_{n} = (X - 1)P_{n-1} + (-1)^{n} \begin{vmatrix} -1 & X - 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & & \ddots & X - 1 \\ -1 & 0 & \dots & \dots & 0 \end{vmatrix} = (X - 1)P_{n-1} - (X - 1)^{n-2}$$

Par récurrence, on peut déterminer l'expression de P_n ou aussi observer la suite arithmétique

$$\frac{P_n}{(X-1)^n} - \frac{P_{n-1}}{(X-1)^{n-1}} = \frac{1}{(X-1)^2} \implies \frac{P_n}{(X-1)^n} = \frac{P_1}{X-1} - \frac{n-1}{(X-1)^2}$$

On en déduit P_n .

(b) On pose $A = B + I_n$ et on a Im $B = \text{Vect}(\varepsilon_1, \varepsilon_2)$ avec $\varepsilon_1 = \sum_{k=2}^n e_k$ et $\varepsilon_2 = e_1$. On peut alors montrer que B est semblable à une matrice par blocs $\left(\begin{array}{c|c} B' & 0 \\ \hline 0 & 0 \end{array}\right)$ avec $B' \in \mathscr{M}_2(\mathbb{R})$.

Remarque : On peut préciser une base de vecteurs propres. On a

$$AX = X \iff x_1 = 0, \sum_{i=2}^{n} x_i = 0 \iff X = \sum_{i=3}^{n} -x_i(e_2 - e_i)$$

d'où une base de $E_1(A)$. Puis, pour $\lambda \neq 1$, il vient

Pour $\lambda \in \operatorname{Sp}(A) \setminus \{1\}$, les vecteurs de la forme $(\lambda - 1, 1, \dots, 1)$ constituent des bases de $E_{\lambda}(A)$. Notant λ_1, λ_2 les valeurs propres de A différentes de 1 et

$$P = \text{mat}_{\mathscr{C}} \mathscr{B} = \begin{pmatrix} \lambda_1 - 1 & \lambda_2 - 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & -1 & 0 & \dots & 0 \\ \vdots & \vdots & 0 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 1 & 0 & \dots & 0 & -1 \end{pmatrix}$$

On a

$$\boxed{P^{-1}AP = \operatorname{diag}(\lambda_1, \lambda_2, 1, \dots, 1)}$$

Exercice 6 (*)

L'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ est-il convexe? est-il un sev de $\mathcal{M}_n(\mathbb{K})$?

Corrigé: On peut observer en premier lieu que sev implique convexe. On va donc essayer de procéder dans cet ordre. On traite le cas n=2, le cas général s'en déduit en considérant des matrices blocs dont le bloc 2×2 en haut à gauche sera celui considéré avant. Pour $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$

et $B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, les matrices A et B sont diagonalisables par condition suffisante mais A + B ne l'est pas sans quoi elle serait semblable à I_2 donc égale à I_2 . Pour les mêmes raisons, la matrice $\frac{A+B}{2}$ qui est combinaison convexe de A et B n'est pas diagonalisable. On conclut

L'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ n'est ni un sev de $\mathcal{M}_n(\mathbb{K})$, ni convexe.

Exercice 7 (*)

Soit $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant $A^n = I_n$ et (I_n, A, \dots, A^{n-1}) libre. Montrer que A est diagonalisable puis préciser Sp(A).

Corrigé: Le polynôme X^n-1 est annulateur de A d'où $\pi_A|X^n-1$. Si $\deg \pi_A < n$, alors la relation $\pi_A(A)=0$ contredit la liberté de la famille (I_n,A,\ldots,A^{n-1}) . On en déduit $\deg \pi_A \geqslant n$ et par conséquent les polynômes π_A et X^n-1 sont associés unitaires donc égaux. Enfin, en observant

$$\pi_{A} = X^{n} - 1 = \prod_{k=0}^{n-1} \left(X - e^{\frac{2ik\pi}{n}} \right)$$

qui est scindé à racines simples dans $\mathbb{C}[X]$, on conclut

La matrice A est diagonalisable avec
$$Sp(A) = \mathbb{U}_n$$
.

Exercice 8 (**)

Soit $A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$. Résoudre en $M \in \mathcal{M}_2(\mathbb{R})$ l'équation $M^2 + M = A$.

Corrigé : On a
$$\chi_A = \begin{vmatrix} X - 5 & -3 \\ -1 & X - 3 \end{vmatrix} = X^2 - 8X + 12 = (X - 2)(X - 6)$$

Par condition suffisante, la matrice A est diagonalisable. On a

$$(x,y) \in \mathcal{E}_2(\mathcal{A}) \iff (\mathcal{A} - 2\mathcal{I}_2)\mathcal{X} = 0 \iff x+y=0 \iff (x,y) = x(1,-1)$$

et $(x,y) \in \mathcal{E}_6(\mathcal{A}) \iff (\mathcal{A} - 6\mathcal{I}_2)\mathcal{X} = 0 \iff (x,y) = y(3,1)$

Ainsi
$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix} \text{ avec } P = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}$$

Pour $M \in \mathcal{M}_2(\mathbb{R})$, notant $M = PXP^{-1}$ avec $X \in \mathcal{M}_2(\mathbb{R})$, on a

$$M^2 + M = A \iff PD^2P^{-1} + PDP^{-1} = PDP^{-1} \iff X^2 + X = D$$

On remarque

$$XD = X^3 + X^2 = DX$$

Posant $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, on trouve

$$XD - DX = \begin{pmatrix} 0 & 4b \\ -4c & 0 \end{pmatrix} = 0 \iff (b, c) = 0$$

Ainsi
$$X^2 + X = D \iff \begin{cases} a^2 + a = 2 \\ d^2 + d = 6 \end{cases} \iff (a, d) \in \{(1, 2), (-2, 2), (1, -3), (-2, -3)\}$$

Enfin après calcul des matrices $M = PDP^{-1}$, on conclut

Les solutions sont
$$\frac{1}{4} \begin{pmatrix} 7 & 3 \\ 1 & 5 \end{pmatrix}$$
, $\begin{pmatrix} -2 & -3 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$, $\frac{1}{4} \begin{pmatrix} -11 & -3 \\ -1 & -9 \end{pmatrix}$.

Remarque: On a vu que X et D commutent et par conséquent, la matrice X est diagonale. C'est un fait plus général : pour f et g dans $\mathscr{L}(E)$ avec E un \mathbb{K} -ev de dimension finie, si f et g commutent et f diagonalisable à valeurs propres simples, alors $g \in \mathbb{K}[f]$ et donc g est en particulier diagonalisable pour le même changement de base que f. Le lecteur curieux pourra se référer à l'exercice 0 de la feuille 0.

Exercice 9 (*)

Soit $E = \mathcal{M}_n(\mathbb{R})$ et $A \in E$ avec $Tr(A) \neq 0$. On pose

$$\forall M \in E$$
 $\varphi(M) = Tr(M)A - Tr(A)M$

- 1. Justifier que $\varphi \in \mathcal{L}(E)$.
- 2. Montrer que φ est diagonalisable puis calculer $\operatorname{Tr}(\varphi)$ et $\det(\varphi)$.

Corrigé : 1. On a φ à valeurs dans E et φ linéaire par bilinéarité du produit et de la trace d'où

$$\varphi \in \mathscr{L}(\mathbf{E})$$

2. Soit $M \in E$ et $\lambda \in \mathbb{R}$ tel que $\varphi(M) = \lambda M$. On a

$$\varphi(M) = \lambda M \iff Tr(M)A = (\lambda + Tr A)M$$

Si $\lambda = -\text{Tr A}$, on trouve

$$\varphi(M) = \lambda M \iff M \in Ker Tr$$

ce qui prouve $-\operatorname{Tr} A \in \operatorname{Sp}(\varphi)$ et $E_{-\operatorname{Tr} A}(\varphi) = \operatorname{Ker} \operatorname{Tr}$. Si $\lambda \neq -\operatorname{Tr} A$, on a $M \in \operatorname{Vect}(A)$ autrement dit $E_{\lambda} \subset \operatorname{Vect}(A)$. On trouve $\varphi(A) = 0$ d'où $\operatorname{Vect}(A) \subset E_{0}(\varphi)$ et comme $0 \neq -\operatorname{Tr} A$, on a $E_{0}(\varphi) \subset \operatorname{Vect}(A)$. Ainsi

$$\operatorname{Sp}(\varphi) = \{0, -\operatorname{Tr} A\}$$
 et $\operatorname{E}_0(\varphi) = \operatorname{Vect}(A)$ et $\operatorname{E}_{-\operatorname{Tr} A}(\varphi) = \operatorname{Ker} \operatorname{Tr}$

On a $\dim E_0(\varphi) + \dim E_{-\operatorname{Tr} A}(\varphi) = \dim E$ ce qui prouve la diagonalisabilité de φ et dans une base \mathscr{B} adaptée à $E = E_0(\varphi) \oplus E_{-\operatorname{Tr} A}(\varphi)$, on a $\operatorname{mat}_{\mathscr{B}} \varphi = \left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & -\operatorname{Tr} (A)I_{n^2-1} \end{array}\right)$. On conclut

L'endomorphisme
$$\varphi$$
 est diagonalisable et $\det \varphi = 0$, Tr $\varphi = -(n^2 - 1)$ Tr (A).

Exercice 10 (*)

Les matrices de $\mathcal{M}_3(\mathbb{R})$ suivantes sont-elles semblables :

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & -8 \\ 0 & 1 & 5 \end{pmatrix}$$

Corrigé : On trouve

$$\chi_{\rm A} = \chi_{\rm B} = ({\rm X} - 1)({\rm X} - 2)^2$$

Clairement

$$\operatorname{rg}(A - 2I_3) = 1 \implies \dim E_2(A) = 2 = m_2(A)$$

Donc la matrice A est diagonalisable. Ensuite

$$B - 2I_3 = \begin{pmatrix} -2 & 0 & 4\\ 1 & -2 & -8\\ 0 & 1 & 3 \end{pmatrix}$$

Les deux premières colonnes étant échelonnées non nulles, on a rg $(B - 2I_3) \ge 2$ (donc égal à 2) et par suite, la matrice B n'est pas diagonalisable et on conclut que

Les matrices A et B ne sont pas semblables.

Exercice 11 (**)

Soit $A \in \mathscr{M}_n(\mathbb{K})$.

1. On suppose A inversible. Montrer l'équivalence

A triangulaire supérieure $\iff \forall k \geqslant 2$ A^k triangulaire supérieure

2. L'équivalence précédente a-t-elle lieu sans l'hypothèse d'inversibilité de A?

Corrigé : 1. Le sens direct est immédiat. On note $\chi_A = \sum_{k=0}^n a_k X^k$. En particulier, on a $a_0 = (-1)^n \det(A) \neq 0$. D'après le théorème de Cayley-Hamilton, il vient

$$\chi_{\mathbf{A}}(\mathbf{A}) = 0 \iff \mathbf{I}_n = -\frac{1}{a_0} \sum_{k=1}^n a_k \mathbf{A}^k$$

d'où en multipliant par A

$$A = -\frac{1}{a_0} \sum_{k=2}^{n+1} a_{k-1} A^k$$

ce qui prouve que la matrice A est triangulaire supérieure. On a donc établi

A triangulaire supérieure
$$\iff \forall k \geqslant 2$$
 A^k triangulaire supérieure

Remarque : On peut faire sans réduction (ce qui rend l'exercice d'un intérêt discutable ...) en observant :

$$A = A^3(A^2)^{-1}$$

La matrice A^2 est inversible, triangulaire supérieure donc son inverse l'est aussi. Il s'ensuit que la matrice A est produit de matrices triangulaires supérieures d'où le résultat.

2. On choisit $A = \begin{pmatrix} M & 0 \\ \hline 0 & 0 \end{pmatrix}$ avec $M = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. On a $A^k = 0$ pour tout $k \ge 2$ et A non triangulaire donc le résultat n'a pas lieu sans hypothèse d'inversibilité.

Exercice 12 (**)

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = I_n - A$. Montrer que A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$ puis établir $\det(A) > 0$.

Corrigé : Le polynôme $P = X^3 + X - 1$ est annulateur de A. On a $x \mapsto P(x)$ dérivable sur \mathbb{R} avec $P'(x) = 3x^2 + 1 > 0$ pour tout x réel et $P(x) \xrightarrow[x \to -\infty]{} -\infty$, $P(x) \xrightarrow[x \to +\infty]{} +\infty$. Ainsi, la fonction polynomiale $x \mapsto P(x)$ réalise une bijection de \mathbb{R} dans \mathbb{R} et admet donc une unique racine réelle α qui est racine simple puisque $P'(\alpha) > 0$. Ainsi, dans $\mathbb{C}[X]$, on obtient $P = (X - \alpha)(X - \omega)(X - \overline{\omega})$ avec $\omega, \overline{\omega}$ les racines complexes conjuguées de P. Comme P est annulateur de A, scindé à racines simples, on conclut

La matrice A est diagonalisable dans
$$\mathcal{M}_n(\mathbb{C})$$
.

Comme P(0) = -1, il s'ensuit que $\alpha > 0$. Par ailleurs, on a $m_{\omega}(A) = m_{\bar{\omega}}(A)$ puisque, soit χ_A n'admet pas de racines complexes ce qui implique $m_{\omega}(A) = m_{\bar{\omega}}(A) = 0$, soit il en admet et dans ce cas, une racine complexe et son conjugué sont racines de même multiplicité puisque $\chi_A \in \mathbb{R}[X]$. Ainsi, par trigonalisation de A, il vient

$$\det \mathbf{A} = \alpha^{m_{\alpha}(\mathbf{A})} \left| \omega \right|^{2m_{\omega}(\mathbf{A})}$$

On conclut

$$\boxed{\det(A) > 0}$$

Exercice 13 (**)

Soit E un \mathbb{K} -ev de dimension n et $f \in \mathcal{L}(E)$ diagonalisable. Montrer que les conditions suivantes sont équivalentes :

1.
$$\exists x \in E \mid (x, f(x), \dots, f^{n-1}(x))$$
 base de E;

- 2. les valeurs de propres de f sont simples;
- 3. (id, f, \ldots, f^{n-1}) base de $\mathbb{K}[f]$.

Corrigé: Soit $\mathscr{B} = (e_1, \ldots, e_n)$ une base de vecteurs propres de f associés aux valeurs propres $\lambda_1, \ldots, \lambda_n$. Soit $x \in E$ avec $x = \sum_{i=1}^n x_i e_i$. Comme $P(f)(e_i) = P(\lambda_i) e_i$ pour tout $i \in [1; n]$ et pour tout $P \in K[X]$, on a

$$\forall k \in \mathbb{N}$$
 $f^k(x) = \sum_{i=1}^n x_i \lambda_i^k e_i$

Notons $\mathscr{L}_x = (x, f(x), \dots, f^{n-1}(x))$. On a

$$\det\left(\operatorname{mat}_{\mathscr{B}}\mathscr{L}_{x}\right) = \begin{vmatrix} x_{1} & x_{1}\lambda_{1} & \dots & x_{1}\lambda_{1}^{n-1} \\ x_{2} & x_{2}\lambda_{2} & \dots & x_{2}\lambda_{2}^{n-1} \\ \vdots & \vdots & & \vdots \\ x_{n} & x_{n}\lambda_{n} & \dots & x_{n}\lambda_{n}^{n-1} \end{vmatrix}$$

Par linéarité sur chaque ligne, on peut factoriser $\prod_{i=1}^{n} x_i$ et on trouve

$$\det\left(\mathrm{mat}_{\mathscr{B}}\mathscr{L}_{x}\right) = \left(\prod_{i=1}^{n} x_{i}\right) \left(\prod_{1 \leqslant i < j \leqslant n} (\lambda_{j} - \lambda_{i})\right)$$

Supposons (1). Ainsi, il existe $x \in E$ tel que

$$\det\left(\operatorname{mat}_{\mathscr{B}}\mathscr{L}_{x}\right) \neq 0 \iff \left(\prod_{i=1}^{n} x_{i}\right) \left(\prod_{1 \leq i < j \leq n} (\lambda_{j} - \lambda_{i})\right) \neq 0$$

Le produit résultant du déterminant de Vandermonde étant non nul, il s'ensuit clairement que les λ_i sont deux à deux distincts ce qui prouve (2). Supposons ensuite (2). Il suffit de choisir $x \in E$ tel que det $\max_{\mathscr{B}} \mathscr{L}_x \neq 0$. Le choix $x = \sum_{i=1}^n e_i$ convient clairement puisqu'on a

$$\det\left(\mathrm{mat}_{\mathscr{B}}\mathscr{L}_{x}\right) = \prod_{1 \leq i < j \leq n} (\lambda_{i} - \lambda_{j}) \neq 0$$

ce qui caractérise que la famille \mathscr{L}_x est une base de E. Comme f est diagonalisable, on a π_f scindé à racines simples avec $\pi_f = \prod_{\lambda \in \operatorname{Sp}(f)} (X - \lambda)$ et par conséquent

les valeurs propres de f sont simples \iff deg $\pi_f = n$

La famille (id , f, \ldots, f^{d-1}) est une base de $\mathbb{K}[f]$ avec $d = \deg \pi_f$ et on en déduit que (3) équivaut à $\deg \pi_f = n$ d'où

Exercice 14 (**)

Soit E un K-ev de dimension finie et u, v dans $\mathcal{L}(E)$, diagonalisables et tels que $u \circ v = v \circ u$. Montrer qu'il existe une base de diagonalisation pour u et v.

Corrigé : On a $E = \bigoplus_{\lambda \in Sp(u)} E_{\lambda}(u)$. Pour $\lambda \in Sp(u)$, comme u et v commutent, alors $E_{\lambda}(u)$ est

stable par v. Notons v_{λ} l'endomorphisme induit par v sur $E_{\lambda}(u)$. On a v_{λ} diagonalisable car induit par un endomorphisme diagonalisable sur un sous-espace stable. Ainsi, on peut trouver

 \mathscr{B}_{λ} une base de $\mathcal{E}_{\lambda}(u)$ qui soit base de diagonalisation de v_{λ} . Mais cette base est également constituée de vecteurs propres de u (associés à λ). Ainsi, en concaténant $\mathscr{B} = \biguplus_{\lambda \in \operatorname{Sp}(u)} \mathscr{B}_{\lambda}$, on obtient une base de diagonalisation simultanée de u et v et on conclut

Il existe une base de diagonalisation pour u et v.