ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°23

Dans ce qui suit, K désigne R ou C.

Exercice 1 (**)

Les matrices de .#5(R) suivantes sont-elles semblables :

0 0 —1 0o -1 -1
A=(1 0 0 B=| -1 -1 =2
01 3 1 2 4
Corrigé : On trouve xa=xg=X>—-3X2+1

Posons f(t) = t> — 3t> + 1 pour ¢ réel. Par dérivation, il vient
vVt e R fft)y=3tt—2) et f(0)=1>0 f(2)=-3<0
Une étude de variations prouve alors que f admet 3 racines réelles distinctes. Ainsi, les polynomes

XA et xp sont scindés & racines simples donc A et B sont diagonalisables semblables a la méme
matrice diagonale d’ou

| Les matrices A et B sont semblables. |

Exercice 2 (**)

Soit A matrice compagne de (u,), € K suite récurrente linéaire d’ordre p > 2. Résoudre
AX = XX avec X = (xo .. .xp_l) non nulle. En déduire la forme des sous-espaces propres de
A et une condition nécessaire et suffisante de diagonalisabilité de A.

Corrigé : On a Uptp = Ap—1Unip—1 + ... + QoUy,

avec a; des scalaires et ag # 0. On rappelle

o 1 0 ... O
VneEN  Xpu = L [xe=ax,
0 0 1
Qo .. ap—1
p—1 )
On note P =X? — 3 ;X" On a
=0
T1 = Ao
AX = \X «<— = {(x07...,1}p_1) :x()(l,)\’”")\p—l)
Tp—1 = )\.fp_g ZE()P()\) =0

agxo + . .. Qp—1Tp—1 = )\l'p,1

On remarque en particulier que X # 0 <= 1y # 0. La derniére équation indique donc A
racine de P. Par ailleurs, les sous-espaces propres sont des droites vectorielles. Si la matrice A
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est diagonalisable, alors on a dimK? = ) dimE,(A) = Card Sp (A) ce qui prouve que A
AESP (A)
admet p valeurs propres distinctes et la réciproque étant immédiate, on conclut

VA € Sp(A) EA(A) = Vect (1, A, ..., P71
A diagonalisable <= A admet p valeurs propres distinctes.

Exercice 3 (***)

0 1 0 ... 0
n 0 2 :

Soit A=|¢g -1 0o “-. o] € A1(R).
o ... 0 1 0

1. Interpréter A comme matrice d'un endomorphisme de E = R,,[X].
2. En déduire que A est diagonalisable.

Corrigé : 1. On décompose

0 0 0 1 0 0
n : : 2 :
A=U+V avec V=19 p,_1 - : et U=|": IR
: . .0 : )
0o ... 0O 1 0 0O ... ... ... 0
On note u et v endomorphismes de E tels que U = matgu et V = matyv avec C = (1, X, ..., X").

On a avec évaluation paresseuse pour rester a valeurs dans E
Vke[0;n]  uXF) =kXF1 et o(XF) = (n— k)X =nX . XF - X2 x Xk
Par combinaison linéaire, il s’ensuit

VPEE uP)=P et g(P)=nXP—X2P

Ainsi A =matyp avec YPeE  ¢(P)=(1—-X*)P' +nXP
2.50it \€e Ret PeE. On a
e(P)=AP <= (1-X*))PP+(nX-NP =0
Considérons I’équation différentielle homogéne associée sur I =]1;+00]
(1=t + (nt — N)x =0 (H)
ns — A
s2—1

t
L’ensemble des solutions est Sy = Vect (f) avec f : ¢ — exp < /

en éléments simples, on trouve

fns — A t{ Q 6} n—A\ A+n
/82_1d3—/ 3—1+5—|—1 ds avec a=— et (= 5

ds) . Par décomposition

D’oil f=telw (t—-1)21+1)

On cherche des solutions polynomiales. Notons @ = k entier, on a A\=n —2k et S =n — k. On
veut 3 entier également d’oil, notant P = (X — 1)*(X + 1)"* pour k € [0; n]
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Vk e[0;n] (1 —=XHP, + (nX —n+2k)P, =0 < ¢(Py) = (n — 2k)P;,

Les Py, ne sont pas nuls (de degré égal a n) donc sont vecteurs propres, associés a des valeurs
propres distinctes (k +— n — 2k injective) et constituent par conséquent une famille libre de
cardinal égal a dim E donc une base de diagonalisation de ¢. Ainsi

’La matrice A est diagonalisable.

Exercice 4 (****)

0 1 0 0
1
On pose An=1|o - . - ol eA#R) et P,=xa,
: .. " .1
0O ... 0 1 0

1. En considérant P,(2cos(f)) avec 6 € | 0; 7 [, déterminer une expression factorisée de P,,.

2. En déduire que A,, est diagonalisable et préciser ses éléments propres
Corrigé : 1. Soit § € |0; 7 [. En développant sur la premiére ligne, on trouve pour n > 3
P.(2cos(f)) = 2cos(0)P,,_1(2cos(0)) — P,_o(2cos(6))
Ainsi, la suite (P,(2cos0)),-, est récurrente linéaire d’ordre 2 d’équation caractéristique
r? —2cos(0)r+1=0
Les racines e ¥ sont complexes conjuguées d’oil 'existence de réels A\, u tels que
Vn > 1 P, (2cos(f)) = Acos(nf) + psin(nd)
On a Pg(2cos(6)) =1 et P1(2cos(f)) = 2cos(f). Puis, on trouve

{PO(QCOS(H)) =1 . A= 1COS<0)
P1(2cos(f)) = Acos(f) + psin(f) = 2 cos(h) = Sin(0)

Ainsi, on obtient
sin(f)) cos(nf) + sin(nd) cos(d)  sin((n + 1)0)
sin(6) B sin(6)

VneN  P,(2cos(f)) =

Soit n entier non nul. On a

P,.(2cos(f)) =0 < sin((n+1)0) =0 < 0 € {nkj_rl,k € Z}

La fonction 6 — cos(f) étant injective sur | 0;7 [, on a

km km
Card {n——i—l’ke [1; n]]} = Card {cos(n+1>,k€ [1; n]]}

Comme P,, est unitaire de degré n et qu’on vient d’exhiber n racines distinctes, on conclut

n km
vneN =T (X 2008 ()
n kl;ll cos |

Remarque : La suite (P,(2cos(f))),, est la suite des polynomes de Tchebychev de seconde es-
péce.




2. Soit n entier non nul. La matrice A,, admet n valeurs propres distinctes donc est diagonalisable
par condition suffisante. Notons
km

vk 1: 0, =
€li;n] Pl

On a

(A, —2cos(0p)],)X =0 < VYl e[l;n] To—1 —2cos(Op)xe + 21 =0 avec zy=
Tpy1 = 0

La suite (x¢)sc[o;nt1] €st récurrente linéaire d’ordre 2 et comme a la premiére question, on
obtient l'existence de «, [ réels tels que

Veel0;n+1] xy = acos(lly) + B sin(06y,)

La condition x5 = 0 fournit o = 0 et on obtient

, Ckm
Vee[l;n] xg—ﬁ81n<n+1>

On conclut

k
La matrice A, est diagonalisable avec Sp (A,) = {COS < :1> kel n]]}
n

k k
et Egcos(ﬂ)(An):Vect (sin( T >,...,sin<n W)) pour k € [1; n].

n+1 n+1 n+1

Remarque : On peut invoquer le théoréme spectral pour la diagonalisabilité de la matrice
symétrique réelle A,,.

Exercice 5 (**)

Soit E = 4,,(K), A € E et on pose (M) = AM pour tout M € E.
1. Justifier que ¢ € Z(E).
2. Montrer A diagonalisable <= ¢ diagonalisable

Corrigé : 1. On a ¢ a valeurs dans E et linéaire par linéarité du produit matriciel. Ainsi

p € Z(E)

2. Soit M € E. Par récurrence immédiate, on a ¢*(M) = A*M pour tout k entier et par consé-
quent, par combinaison linéaire

VP e K[X]  P(p)(M) = P(A)M

Par suite P annulateur de ¢ <= P annulateur de A

On en déduit que 7, = 75 et par conséquent

A diagonalisable <= ¢ diagonalisable




Exercice 6 (***)

Soit E un K-ev de dimension finie et (u;);e; dans Z(E), endomorphismes diagonalisables com-
mutant deux a deux. Montrer qu’il existe une base commune de diagonalisation.

Corrigé : Soit (u;,,...,u;,) famille génératrice de Vect (u;);er, sev de Z(E) de dimension finie.
Par souci de simplification, on la note abusivement (uy,...,u,). On procéde ensuite par récur-
rence sur p. L’initialisation pour p = 1 est immédiate. On suppose la propriété vraie au rang
p — 1 entier non nul. On décompose E = @ E,(u,) puis on considére les u; ) induit par
AESD (u
u; sur Ey(u,) pour A € Sp(u,) et i € [1;p— pl(]].p)La famille (u;))1<i<p—1 vérifie Phypothése de
récurrence et par conséquent, il existe %) base de diagonalisation commune a tous les u; ) et
également & 'endomorphisme induit par u, sur Ey(u,). La base concaténée |4 %, est alors

AESP (up)
une base de diagonalisation simultanée. Ainsi

Il existe une base commune de diagonalisation pour une famille
d’endomorphismes diagonalisables commutant deux a deux.

Exercice 7 (**)

Soit E un R-ev de dimension finie et u,v dans .Z(E) diagonalisables tels que u
que u = v.

3 = 3. Montrer

Corrigé : AvecP = 3 /ALy ott (L) aesp (u3) désigne la famille des polynomes interpolateurs
A€eSp (u?)
de Lagrange associée a Sp (u®). On a donc

YAeSpu?) P\ =+VA
Dans 2 une base de diagonalisation de u, on a matgu® = diagyg, (u)()\?’ImA) puis

mat P (u?) = diag,cgp (1) (Mlm, ) = matgu

d’ott u = P(u?). De méme v = P(v3) et comme u® = v3, on conclut

u="7v

Exercice 8 (****)
Soit u € Z(C™). Montrer que u est non diagonalisable si et seulement s'il existe un plan vectoriel

F stable par u et Z une base de F tels que matgup = (6\ i\)

Corrigé : Supposons u non diagonalisable. On a 7, scindé mais pas a racines simples d’ou
I'existence de A € Sp(u) de multiplicité a > 2 dans m,. On note 7, = (X — \)*Q, H =
Ker (u — Aid)* et v = ug. On a Ker (v — Aid)*! C Ker (v — Aid)® = H et cette inclusion
est stricte sans quoi on aurait H = Ker (v — X\id )*™! d’ott (X — A\)*~! annulateur de v puis
(X — X\)*71Q annulateur de u (puisque E = H @ Ker Q(u) d’aprés le lemme des noyaux) ce qui
contredit la minimalité de m,. On prend a € H \ Ker (v — Aid)*™ 1 y = (v — Aid)* %(a) et
r = (v—\id)* !(a). Par choix de a, on a y et  non nuls puis v(z) = Az et v(y) = = + \y. Soit
(7,0) € C? tel que yx + oy = 0. Tl vient

(v—=Aid)(yz + dy) =0z =0



On en déduit 6 = 0 puis 7 = 0. Ainsi, le sev F = Vect (z,y) est un plan stable par v donc

par u et notant & = (x,y), on a matgup = ( ) Réciproquement, si u était diagonalisable,

0 A
alors pour F stable, on aurait ur diagonalisable puis mat zur semblable & Ay donc égale a cette
matrice ce qui est faux. On conclut

u non diagonalisable <= il existe F plan stable et % base de F tels que matgupr = (g\ i\)

Exercice 9 (***)

Soit E un K-ev de dimension finie, u,v dans .Z(E) avec uw o v = v o u et v nilpotent. Montrer
que det(u + v) = det u.

Corrigé : Si u € GL(E), on a det(u + v) = detudet(id +u~! o v) et comme u~'v est nilpotent,
on peut trouver une base de E dans laquelle la matrice soit triangulaire supérieure stricte d’ou
det(id +u~'ov) = detid = 1. Si u ¢ GL(E), alors Ker u est stable par v d’ott un endomorphisme
w induit par v sur Ker u. Mais comme v est nilpotent, w 1’est aussi donc de noyau non réduit a
Og et un élément non nul du noyau est dans Ker (u 4 v) d’oit det(u + v) = 0 = det u. Ainsi

det(u 4+ v) = detu

Exercice 10 (***)

Soit A € 4, (K) et B — (%‘%) € Mon(K).

Montrer que A diagonalisable <= B diagonalisable
2| A2 3| A3
Corrigé : On a B? =2 < iz QQ ) B3 = 22 < 23 ﬁg )

et par une récurrence immédiate

Vk € N* BF =

Il s’ensuit par combinaison linéaire

P(2A) | P(2A) ) )
P(2A) | P(2A)

Si B est diagonalisable, il existe P annulateur de B scindé a racines simples et on a Sp (B) C Z(P)
ou Z(P) désigne I’ensemble des racines de P. Comme rg (B) < 2n puisque par exemple L; = L, 1,
ona0 € Sp(B) d’ou P(0) = 0. Ainsi, le polynoéme P vérifie la condition évoquée par (x) et P(2X)
est donc un polynéme annulateur scindé a racines simples de A d’ou

VP € K[X] avec P(0)=0 P(B) = % (

B diagonalisable =—- A diagonalisable

Réciproquement, si A est diagonalisable, il existe € K[X] annulateur de A scindé a racines
simples. Quitte & considérer XQ, on a 0 € Z(Q). Ainsi, en posant P(X) = Q(X/2), il vient
d’aprés la relation (%) que P(B) = 0 avec P scindé & racines simples, autrement dit

A diagonalisable = B diagonalisable

On conclut ’ A diagonalisable «<— B diagonalisable‘
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Variantes : 1. On peut faire sans polynéome annulateur mais c’est plus délicat. Si A est diago-
nalisable, on dispose de P € GL,(K) telle que P"'AP = D diagonale. Posant Q = diag(P, P),

on trouve
D|D
-1 _
o - (i)

1
Puis, posant R = ( i" _Lf ), on trouve R inversible d’inverse R™! = §R et (QR)™'BQR =

diag(2D, 0). Réciproquement supposons B diagonalisable. On a

K" —EyB)e @ EyB)
A€Sp (B)~{0}

Pour A #Z0 et X = % € Mo, 1(K), on a
2

= () () 2 (30)
BX_AX<:><AA <) =%

X1:X2
<— A(X; + Xg) = XX; = A\Xy <—
(X4 2) 1 2 AXlngl

Ainsi, avec I'application injective X +— Xy, on envoie une famille libre de vecteurs propres de B
associés a des valeurs propres non nulles sur des vecteurs propres de A associés a des valeurs
propres non nulles. On en déduit

dm @ EB)<dm @ E\A)
AESp (B)~{0} AESP (A)~{0}

Avec les opérations L;.,, < Ly, —L; pour i € [1; n] puis Cj4,, < Cj, —C; pour j € [1; n],
il vient

D’apres le théoréme du rang, il s’ensuit

dimEy(B) =2n—rg B=2n—rg A =n+ dimEq(A)

Ainsi 2n<n+ Y. dimEy(A)
AESDP (A)
On en déduit n< Y, dimE)(A) <dimK"=n
AESP (A)

et on conclut que la matrice A est diagonalisable.

2. Pour le sens direct, on peut aussi partir de I’égalité

K =EA)e @ FEaA)
AESP (A)~{0}

L’application injective X (X) envoie une famille libre de vecteurs propres de A associés

a des valeurs propres non nulles sur des vecteurs propres de B associés a des valeurs propres
non nulles. L’application injective X <0 envoie une famille libre de vecteurs propres de A
associés a zéro sur une famille libre de vecteurs propres de B associés a zéro. On peut compléter
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cette famille par (E; — E;4,,)1<j<, famille de vecteurs propres de B associés a zéro. La famille
obtenue est libre et on en déduit

dim Ey(B) + >, dimE\(B) > n+dimEy(A) + > dimEy(A) =n+ dimK"
A€Sp (B)~{0} XeSp (A)~{0}

Le résultat suit.

Exercice 11 (**%*)
Soit E un K-ev de dimension n et f € Z(E) diagonalisable. On définit le commutant de f par
C(f)={9cZE) | fog=gof}
1. Justifier que €(f) est un sev de Z(E).
2. Montrer : geC(f) < YreSp(f) E,(f) stable par g

3. Déterminer dim ' (f).
4. Si les valeurs propres de f sont simples, montrer que €' (f) = K[f].

Corrigé : 1. L’ensemble €(f) contient 04(g) et est stable par combinaison linéaire par linéarité
de la composition d’ou

Le commutant € (f) est un sev de Z(E).

2. Si g € €(f), alors, pour tout A € Sp (f), les endomorphismes g et f — Aid commutent d’ou
la stabilité de E,(f) = Ker (f — Aid) par g. Réciproquement, comme f est diagonalisable,

on a E= & E\f)
AESP (f)
Soitz € E.Onax = ) x,sadécomposition dans la somme directe ci-avant. Pour A € Sp (f),
AESP (f)

on a par stabilité de E,(f) par g que g(z)) € Ex(f). Il s’ensuit

foglz)= >0 [flglan)) = X2 Ag(:m)zg( 2 M“A)ZQOf(I)

AESP (f) A€eSp (f) AESp (f)

Ainsi g€ C(f) < YAeSp(f) E\(f) stable par g
Variante : On note Sp (f) = {\1,... A} et Z une base de E,, (f) pour k € [1; r]. La fa-

mille # = | %y est une base de E adaptée a la décomposition E = @@ E,, (f). Si les sev
k=1 k=1
propres sont stables, alors matgzg = diag(Ay, ..., A,). La matrice matyg commute clairement

avec diag(A L, ..., ALy, ) d’ou le résultat.

3. On conserve les notations précédentes. D’aprés I’équivalence précédente, on obtient
g€ C(f) < matyg = diag(Ay,..., A,)

avec Ay, € My, (K) et myp = dimE,, (f) pour k € [1; r]. L’application g — matgg étant un
isomorphisme, on a € (f) isomorphe a I’ensemble des matrices diagonales par blocs de la forme
précédente et par conséquent

A (f) = 3 dim A4, (K) = Som

k=1 k=1



Autrement dit dm%(f) = >, dimE,(f)?
AESp (f)

Variante : Pour A\ € Sp(f), 'endomorphisme ¢ induit sur E,(f) un endomorphisme g, €
Z(Ex(f)). Considérons 'application

¢(f) — 11 Z(E)
D . AESP (f)
9 — (9x)resp (f)
Comme une application est caractérisée par ses restrictions sur les sev d’une décomposition de
E en somme directe, il s’ensuit que ® est injective. Etant donné (gy)xesp € 11 Z(ENS)),

AESP (f)
on pose grx= >, xxr= Y, gx)
A€SP (f) AESP (f)
ou l'écriture z = > x, désigne la décomposition dans € E,(f). L’application ¢ ainsi
AE€SP (f) AE€Sp (f)

définie est clairement dans .2 (E) et vérifie le critére établi a la question précédente, autrement dit
g € €(f) ce qui prouve la surjectivité de ®. Par conséquent, I'application ® est un isomorphisme
et on retrouve

dmZ(f) = > dmZ(ELNf) = > dimEy(f)?

AESP (f) AESP (f)

4. Si les valeurs propres simples, on a 7y = x5 d'ott dimK[f] = dimE et dimE,(f) = 1 pour
tout A € Sp (f) d’oi

dim%(f)= >, dimE,(f)=dimE = dimK[f]

AESP (f)
et comme on a clairement K[f] C €(f), on conclut
% (f) = K[f]

Remarques : Pour f diagonalisable, on peut faire mieux en montrant
f a valeurs propres simples <= €(f) = K|[f]
Il suffit d’observer

dimK[f] =degn; < dmE = Y dimE\(f)< > dimE,\(f)*=dim%(f)
AESD (f) AESP (f)

et il y a égalité si toutes les inégalités sont des égalités.

Exercice 12 (**%*)

Soit E = ., (K), (A,B) € E? et on pose (M) = AM + MB pour tout M € E. Justifier que
¢ € Z(E) puis montrer que si A et B sont diagonalisables, alors ¢ 1'est.

Corrigé : 1. L’application ¢ est clairement a valeurs dans E et linéaire par linéarité de la somme
et bilinéarité du produit matriciel d’ou

p € ZL(E)

2. Il existe P, Q dans GL,(K) tel que A = PDP~! et B = QAQ™" avec D = diag(\;)ic[1;n] €t
A = diag(pi)ief1;n]- On note M; ; = PE; ;Q~' pour tout (i,j) € [1; n]* Pour (i,5) € [1; n]?,
on a




@(Mz,]) = AM%] + Mz,]B = PDEiJQ_l + PEZ'J‘AQ_l

et DE;; = > M EeEij =ANEi;  EijjA= > B jEe = ;B
=1 ~—— P N
5@71'}3@17‘ 5j,ZEi,Z
Ainsi (M) = APE; Q71 + 1 PE; Q71 = (A + p1j)My

La famille (M; ;)¢ )ef1;n2 est donc une famille de vecteurs propres de ¢ et on vérifie sans
difficulté qu’elle est libre ce qui prouve qu’il s’agit d’une base de diagonalisation de ¢. Ainsi

’A, B diagonalisables = ¢ diagonalisable‘

Exercice 13 (***)
Soit A € 4, (C). Montrer
A nilpotente <= Vk € [1;n] Tr(A*) =0

Corrigé : Le sens direct est immédiat puisque A est trigonalisable et Sp (A) = {0}. Récipro-
quement, supposons Sp (A) # {0} et notons A, ..., \, les valeurs propres non nulles de A. Par
trigonalisation, on a

p
Vke[l;n] Tr (AF) = S my,\F =0
=1

1=

En particulier : : : =1 :
AN Amy 0
-V
On a detV= T[] (Aj—X)#0
1<i<j<p

ce qui impose my,A\; = 0 et qui est absurde puisque les ); sont valeurs propres donc de multiplicité
non nulle et sont supposées non nulles. Par conséquent, on a Sp (A) C {0} et comme A est
trigonalisable, 'inclusion est une égalité et on obtient la nilpotence de A. Ainsi

A nilpotente <= Vk € [1;n] Tr(A*) =0

Variante : Supposons Tr (A*) = 0 pour k € [1; n]. On en déduit Tr (P(A)) = 0 pour tout
P € C,[X] vérifiant P(0) = 0. Supposons Sp (A) # {0}. On considére la famille de polynomes
interpolateur (Ly), associés & Sp (A) U {0}. Le cardinal de cet ensemble est au plus n + 1. Les
polynomes L, sont donc de degré au plus n. Soit A € Sp(A) ~ {0}. On a L,(0) = 0 d’ou
Tr (Ly(A)) = 0. Or, il existe P € GL,(C) et T triangulaire supérieure telles que A = PTP~!
d’ou

Tr (Ly(A)) = Tr (La(T)) =my=0 avec my >1

ce qui est absurde. On en déduit Sp (A) C {0} d’ou 'égalité puisque le spectre complexe est non
vide.
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Exercice 14 (**%*)

Pour n > 2, montrer que tout hyperplan de .#,,(K) rencontre GL, (K).

Corrigé : Soit H hyperplan de E = ., (K). Supposons HN GL,,(K) = @. Comme I,, ¢ H, alors
Vect (I,) @ H = E. Soit M € E nilpotente. Il existe (A, \) € H x K tel que M = A 4+ Al,,. Soit
X € Ker A avec X # 0, choix possible puisque A n’est pas inversible. On trouve MX = AX. Or,
le spectre d’une matrice nilpotente est réduit a {0} d’ou A = 0 et par conséquent M = A € H.

Ainsi, ’hyperplan contient toutes les matrices nilpotentes. Par stabilité par combinaison linéaire,
n—1

il contient donc E,, 1+ > E; ;41, somme de deux matrices triangulaires strictes. Mais cette matrice
i=1

est inversible ce qui contredit I’hypothése faite sur H. Par conséquent

Tout hyperplan de ., (K) rencontre GL,, (K).
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