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Feuille d'exercices n°23

Dans ce qui suit, K désigne R ou C.

Exercice 1 (**)

Les matrices de M3(R) suivantes sont-elles semblables :

A =

Ñ
0 0 −1
1 0 0
0 1 3

é
B =

Ñ
0 −1 −1
−1 −1 −2
1 2 4

é
Corrigé : On trouve χA = χB = X3 − 3X2 + 1

Posons f(t) = t3 − 3t2 + 1 pour t réel. Par dérivation, il vient

∀t ∈ R f ′(t) = 3t(t− 2) et f(0) = 1 > 0 f(2) = −3 < 0

Une étude de variations prouve alors que f admet 3 racines réelles distinctes. Ainsi, les polynômes
χA et χB sont scindés à racines simples donc A et B sont diagonalisables semblables à la même
matrice diagonale d'où

Les matrices A et B sont semblables.

Exercice 2 (**)

Soit A matrice compagne de (un)n ∈ KN suite récurrente linéaire d'ordre p ⩾ 2. Résoudre
AX = λX avec X⊤ =

(
x0 . . . xp−1

)
non nulle. En déduire la forme des sous-espaces propres de

A et une condition nécessaire et su�sante de diagonalisabilité de A.

Corrigé : On a un+p = ap−1un+p−1 + . . .+ a0un

avec ai des scalaires et a0 ̸= 0. On rappelle

∀n ∈ N Xn+1 =


0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1
a0 . . . . . . . . . ap−1


︸ ︷︷ ︸

=A

×Xn = AXn

On note P = Xp −
p−1∑
i=0

aiX
i. On a

AX = λX ⇐⇒


x1 = λx0

...

xp−1 = λxp−2

a0x0 + . . . ap−1xp−1 = λxp−1

⇐⇒
®
(x0, . . . , xp−1) = x0(1, λ, . . . , λ

p−1)

x0P(λ) = 0

On remarque en particulier que X ̸= 0 ⇐⇒ x0 ̸= 0. La dernière équation indique donc λ
racine de P. Par ailleurs, les sous-espaces propres sont des droites vectorielles. Si la matrice A
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est diagonalisable, alors on a dimKp =
∑

λ∈Sp (A)

dimEλ(A) = Card Sp (A) ce qui prouve que A

admet p valeurs propres distinctes et la réciproque étant immédiate, on conclut

∀λ ∈ Sp (A) Eλ(A) = Vect (1, λ, . . . , λp−1)
A diagonalisable ⇐⇒ A admet p valeurs propres distinctes.

Exercice 3 (***)

Soit A =



0 1 0 . . . 0

n 0 2
. . .

...

0 n− 1 0
. . . 0

...
. . .

. . .
. . . n

0 . . . 0 1 0

 ∈Mn+1(R).

1. Interpréter A comme matrice d'un endomorphisme de E = Rn[X].

2. En déduire que A est diagonalisable.

Corrigé : 1. On décompose

A = U+V avec V =



0 . . . . . . . . . 0

n
. . .

...

0 n− 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 0

 et U =



0 1 0 . . . 0
...

. . . 2
. . .

...
...

. . .
. . . 0

...
. . . n

0 . . . . . . . . . 0


On note u et v endomorphismes de E tels que U = matCu et V = matC v avec C = (1,X, . . . ,Xn).
On a avec évaluation paresseuse pour rester à valeurs dans E

∀k ∈ [[ 0 ; n ]] u(Xk) = kXk−1 et v(Xk) = (n− k)Xk+1 = nX · Xk − X2 × kXk−1

Par combinaison linéaire, il s'ensuit

∀P ∈ E u(P) = P′ et g(P) = nXP− X2P′

Ainsi A = matCφ avec ∀P ∈ E φ(P) = (1− X2)P′ + nXP

2. Soit λ ∈ R et P ∈ E. On a

φ(P) = λP ⇐⇒ (1− X2)P′ + (nX− λ)P = 0

Considérons l'équation di�érentielle homogène associée sur I = ] 1 ; +∞ [

(1− t2)x′ + (nt− λ)x = 0 (H)

L'ensemble des solutions est SH = Vect (f) avec f : t 7→ exp

Å∫ tns− λ

s2 − 1
ds

ã
. Par décomposition

en éléments simples, on trouve∫ tns− λ

s2 − 1
ds =

∫ t ï α

s− 1
+

β

s+ 1

ò
ds avec α =

n− λ

2
et β =

λ+ n

2

D'où f = t ∈ I 7→ (t− 1)α(1 + t)β

On cherche des solutions polynomiales. Notons α = k entier, on a λ = n− 2k et β = n− k. On
veut β entier également d'où, notant Pk = (X− 1)k(X + 1)n−k pour k ∈ [[ 0 ; n ]]

2



∀k ∈ [[ 0 ; n ]] (1− X2)P′
k + (nX− n+ 2k)Pk = 0 ⇐⇒ φ(Pk) = (n− 2k)Pk

Les Pk ne sont pas nuls (de degré égal à n) donc sont vecteurs propres, associés à des valeurs
propres distinctes (k 7→ n − 2k injective) et constituent par conséquent une famille libre de
cardinal égal à dimE donc une base de diagonalisation de φ. Ainsi

La matrice A est diagonalisable.

Exercice 4 (****)

On pose An =



0 1 0 . . . 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 0

 ∈Mn(R) et Pn = χAn

1. En considérant Pn(2 cos(θ)) avec θ ∈ ] 0 ; π [, déterminer une expression factorisée de Pn.

2. En déduire que An est diagonalisable et préciser ses éléments propres

Corrigé : 1. Soit θ ∈ ] 0 ; π [. En développant sur la première ligne, on trouve pour n ⩾ 3

Pn(2 cos(θ)) = 2 cos(θ)Pn−1(2 cos(θ))− Pn−2(2 cos(θ))

Ainsi, la suite (Pn(2 cos θ))n⩾1 est récurrente linéaire d'ordre 2 d'équation caractéristique

r2 − 2 cos(θ)r + 1 = 0

Les racines e
+− iθ sont complexes conjuguées d'où l'existence de réels λ, µ tels que

∀n ⩾ 1 Pn(2 cos(θ)) = λ cos(nθ) + µ sin(nθ)

On a P0(2 cos(θ)) = 1 et P1(2 cos(θ)) = 2 cos(θ). Puis, on trouve®
P0(2 cos(θ)) = λ = 1

P1(2 cos(θ)) = λ cos(θ) + µ sin(θ) = 2 cos(θ)
⇐⇒

λ = 1

µ =
cos(θ)

sin(θ)

Ainsi, on obtient

∀n ∈ N Pn(2 cos(θ)) =
sin(θ) cos(nθ) + sin(nθ) cos(θ)

sin(θ)
=

sin((n+ 1)θ)

sin(θ)

Soit n entier non nul. On a

Pn(2 cos(θ)) = 0 ⇐⇒ sin((n+ 1)θ) = 0 ⇐⇒ θ ∈
ß

kπ

n+ 1
, k ∈ Z

™
La fonction θ 7→ cos(θ) étant injective sur ] 0 ; π [, on a

Card

ß
kπ

n+ 1
, k ∈ [[ 1 ; n ]]

™
= Card

ß
cos

Å
kπ

n+ 1

ã
, k ∈ [[ 1 ; n ]]

™
Comme Pn est unitaire de degré n et qu'on vient d'exhiber n racines distinctes, on conclut

∀n ∈ N∗ Pn =
n∏

k=1

Å
X− 2 cos

Å
kπ

n+ 1

ãã
Remarque : La suite (Pn(2 cos(θ)))n est la suite des polynômes de Tchebychev de seconde es-
pèce.
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2. Soit n entier non nul. La matrice An admet n valeurs propres distinctes donc est diagonalisable
par condition su�sante. Notons

∀k ∈ [[ 1 ; n ]] θk =
kπ

n+ 1

On a

(An − 2 cos(θk)In)X = 0 ⇐⇒ ∀ℓ ∈ [[ 1 ; n ]] xℓ−1 − 2 cos(θk)xℓ + xℓ+1 = 0 avec x0 =
xn+1 = 0

La suite (xℓ)ℓ∈[[ 0 ;n+1 ]] est récurrente linéaire d'ordre 2 et comme à la première question, on
obtient l'existence de α, β réels tels que

∀ℓ ∈ [[ 0 ; n+ 1 ]] xℓ = α cos(ℓθk) + β sin(ℓθk)

La condition x0 = 0 fournit α = 0 et on obtient

∀ℓ ∈ [[ 1 ; n ]] xℓ = β sin

Å
ℓkπ

n+ 1

ã
On conclut

La matrice An est diagonalisable avec Sp (An) =

ß
cos

Å
kπ

n+ 1

ã
, k ∈ [[ 1 ; n ]]

™
et E2 cos( kπ

n+1)
(An) = Vect

Å
sin

Å
kπ

n+ 1

ã
, . . . , sin

Å
nkπ

n+ 1

ãã
pour k ∈ [[ 1 ; n ]].

Remarque : On peut invoquer le théorème spectral pour la diagonalisabilité de la matrice
symétrique réelle An.

Exercice 5 (**)

Soit E = Mn(K), A ∈ E et on pose φ(M) = AM pour tout M ∈ E.

1. Justi�er que φ ∈ L (E).

2. Montrer A diagonalisable ⇐⇒ φ diagonalisable

Corrigé : 1. On a φ à valeurs dans E et linéaire par linéarité du produit matriciel. Ainsi

φ ∈ L (E)

2. Soit M ∈ E. Par récurrence immédiate, on a φk(M) = AkM pour tout k entier et par consé-
quent, par combinaison linéaire

∀P ∈ K[X] P(φ)(M) = P(A)M

Par suite P annulateur de φ ⇐⇒ P annulateur de A

On en déduit que πφ = πA et par conséquent

A diagonalisable ⇐⇒ φ diagonalisable
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Exercice 6 (***)

Soit E un K-ev de dimension �nie et (ui)i∈I dans L (E), endomorphismes diagonalisables com-
mutant deux à deux. Montrer qu'il existe une base commune de diagonalisation.

Corrigé : Soit (ui1 , . . . , uip) famille génératrice de Vect (ui)i∈I, sev de L (E) de dimension �nie.
Par souci de simpli�cation, on la note abusivement (u1, . . . , up). On procède ensuite par récur-
rence sur p. L'initialisation pour p = 1 est immédiate. On suppose la propriété vraie au rang
p − 1 entier non nul. On décompose E =

⊕
λ∈Sp (up)

Eλ(up) puis on considère les ui,λ induit par

ui sur Eλ(up) pour λ ∈ Sp (up) et i ∈ [[ 1 ; p − 1 ]]. La famille (ui,λ)1⩽i⩽p−1 véri�e l'hypothèse de
récurrence et par conséquent, il existe Bλ base de diagonalisation commune à tous les ui,λ et

également à l'endomorphisme induit par up sur Eλ(up). La base concaténée
⊎

λ∈Sp (up)

Bλ est alors

une base de diagonalisation simultanée. Ainsi

Il existe une base commune de diagonalisation pour une famille
d'endomorphismes diagonalisables commutant deux à deux.

Exercice 7 (**)

Soit E un R-ev de dimension �nie et u, v dans L (E) diagonalisables tels que u3 = v3. Montrer
que u = v.

Corrigé : Avec P =
∑

λ∈Sp (u3)

3
√
λLλ où (Lλ)λ∈Sp (u3) désigne la famille des polynômes interpolateurs

de Lagrange associée à Sp (u3). On a donc

∀λ ∈ Sp (u3) P(λ) = 3
√
λ

Dans B une base de diagonalisation de u, on a matBu
3 = diagλ∈Sp (u)(λ

3Imλ
) puis

matBP(u
3) = diagλ∈Sp (u)(λImλ

) = matBu

d'où u = P(u3). De même v = P(v3) et comme u3 = v3, on conclut

u = v

Exercice 8 (****)

Soit u ∈ L (Cn). Montrer que u est non diagonalisable si et seulement s'il existe un plan vectoriel

F stable par u et B une base de F tels que matBuF =

Å
λ 1
0 λ

ã
.

Corrigé : Supposons u non diagonalisable. On a πu scindé mais pas à racines simples d'où
l'existence de λ ∈ Sp (u) de multiplicité α ⩾ 2 dans πu. On note πu = (X − λ)αQ, H =
Ker (u − λ id )α et v = uH. On a Ker (v − λ id )α−1 ⊂ Ker (v − λ id )α = H et cette inclusion
est stricte sans quoi on aurait H = Ker (v − λ id )α−1 d'où (X − λ)α−1 annulateur de v puis
(X− λ)α−1Q annulateur de u (puisque E = H⊕ Ker Q(u) d'après le lemme des noyaux) ce qui
contredit la minimalité de πu. On prend a ∈ H ∖ Ker (v − λ id )α−1, y = (v − λ id )α−2(a) et
x = (v− λ id )α−1(a). Par choix de a, on a y et x non nuls puis v(x) = λx et v(y) = x+ λy. Soit
(γ, δ) ∈ C2 tel que γx+ δy = 0. Il vient

(v − λ id )(γx+ δy) = δx = 0
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On en déduit δ = 0 puis γ = 0. Ainsi, le sev F = Vect (x, y) est un plan stable par v donc

par u et notant B = (x, y), on a matBuF =

Å
λ 1
0 λ

ã
. Réciproquement, si u était diagonalisable,

alors pour F stable, on aurait uF diagonalisable puis matBuF semblable à λI2 donc égale à cette
matrice ce qui est faux. On conclut

u non diagonalisable ⇐⇒ il existe F plan stable et B base de F tels que matBuF =

Å
λ 1
0 λ

ã
Exercice 9 (***)

Soit E un K-ev de dimension �nie, u, v dans L (E) avec u ◦ v = v ◦ u et v nilpotent. Montrer
que det(u+ v) = detu.

Corrigé : Si u ∈ GL(E), on a det(u+ v) = detu det(id +u−1 ◦ v) et comme u−1v est nilpotent,
on peut trouver une base de E dans laquelle la matrice soit triangulaire supérieure stricte d'où
det(id +u−1◦v) = det id = 1. Si u /∈ GL(E), alors Ker u est stable par v d'où un endomorphisme
w induit par v sur Ker u. Mais comme v est nilpotent, w l'est aussi donc de noyau non réduit à
0E et un élément non nul du noyau est dans Ker (u+ v) d'où det(u+ v) = 0 = detu. Ainsi

det(u+ v) = detu

Exercice 10 (***)

Soit A ∈Mn(K) et B =

Å
A A
A A

ã
∈M2n(K).

Montrer que A diagonalisable ⇐⇒ B diagonalisable

Corrigé : On a B2 = 2

Å
A2 A2

A2 A2

ã
B3 = 22

Å
A3 A3

A3 A3

ã
et par une récurrence immédiate

∀k ∈ N∗ Bk =
1

2

Å
(2A)k (2A)k

(2A)k (2A)k

ã
Il s'ensuit par combinaison linéaire

∀P ∈ K[X] avec P(0) = 0 P(B) =
1

2

Å
P(2A) P(2A)
P(2A) P(2A)

ã
(*)

Si B est diagonalisable, il existe P annulateur de B scindé à racines simples et on a Sp (B) ⊂ Z(P)
où Z(P) désigne l'ensemble des racines de P. Comme rg (B) < 2n puisque par exemple L1 = Ln+1,
on a 0 ∈ Sp (B) d'où P(0) = 0. Ainsi, le polynôme P véri�e la condition évoquée par (∗) et P(2X)
est donc un polynôme annulateur scindé à racines simples de A d'où

B diagonalisable =⇒ A diagonalisable

Réciproquement, si A est diagonalisable, il existe Q ∈ K[X] annulateur de A scindé à racines
simples. Quitte à considérer XQ, on a 0 ∈ Z(Q). Ainsi, en posant P(X) = Q(X/2), il vient
d'après la relation (∗) que P(B) = 0 avec P scindé à racines simples, autrement dit

A diagonalisable =⇒ B diagonalisable

On conclut A diagonalisable ⇐⇒ B diagonalisable
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Variantes : 1. On peut faire sans polynôme annulateur mais c'est plus délicat. Si A est diago-
nalisable, on dispose de P ∈ GLn(K) telle que P−1AP = D diagonale. Posant Q = diag(P,P),
on trouve

Q−1BB =

Å
D D
D D

ã
Puis, posant R =

Å
In In
In −In

ã
, on trouve R inversible d'inverse R−1 =

1

2
R et (QR)−1BQR =

diag(2D, 0). Réciproquement supposons B diagonalisable. On a

K2n = E0(B)⊕
⊕

λ∈Sp (B)∖{0}
Eλ(B)

Pour λ ̸= 0 et X =

Å
X1

X2

ã
∈M2n,1(K), on a

BX = λX ⇐⇒
Å

A A
A A

ãÅ
X1

X2

ã
= λ

Å
X1

X2

ã
⇐⇒ A(X1 +X2) = λX1 = λX2 ⇐⇒

X1 = X2

AX1 =
λ

2
X1

Ainsi, avec l'application injective X 7→ X1, on envoie une famille libre de vecteurs propres de B
associés à des valeurs propres non nulles sur des vecteurs propres de A associés à des valeurs
propres non nulles. On en déduit

dim
⊕

λ∈Sp (B)∖{0}
Eλ(B) ⩽ dim

⊕
λ∈Sp (A)∖{0}

Eλ(A)

Avec les opérations Li+n ← Li+n − Li pour i ∈ [[ 1 ; n ]] puis Cj+n ← Cj+n −Cj pour j ∈ [[ 1 ; n ]],
il vient

rg B = rg

Å
A A
A A

ã
= rg

Å
A A
0 0

ã
= rg

Å
A 0
0 0

ã
= rg A

D'après le théorème du rang, il s'ensuit

dimE0(B) = 2n− rg B = 2n− rg A = n+ dimE0(A)

Ainsi 2n ⩽ n+
∑

λ∈Sp (A)

dimEλ(A)

On en déduit n ⩽
∑

λ∈Sp (A)

dimEλ(A) ⩽ dimKn = n

et on conclut que la matrice A est diagonalisable.

2. Pour le sens direct, on peut aussi partir de l'égalité

Kn = E0(A)⊕
⊕

λ∈Sp (A)∖{0}
Eλ(A)

L'application injective X 7→
Å

X
X

ã
envoie une famille libre de vecteurs propres de A associés

à des valeurs propres non nulles sur des vecteurs propres de B associés à des valeurs propres

non nulles. L'application injective X 7→
Å

X
0

ã
envoie une famille libre de vecteurs propres de A

associés à zéro sur une famille libre de vecteurs propres de B associés à zéro. On peut compléter
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cette famille par (Ej − Ej+n)1⩽j⩽n famille de vecteurs propres de B associés à zéro. La famille
obtenue est libre et on en déduit

dimE0(B) +
∑

λ∈Sp (B)∖{0}
dimEλ(B) ⩾ n+ dimE0(A) +

∑
λ∈Sp (A)∖{0}

dimEλ(A) = n+ dimKn

Le résultat suit.

Exercice 11 (***)

Soit E un K-ev de dimension n et f ∈ L (E) diagonalisable. On dé�nit le commutant de f par

C (f) = {g ∈ L (E) | f ◦ g = g ◦ f}

1. Justi�er que C (f) est un sev de L (E).

2. Montrer : g ∈ C (f) ⇐⇒ ∀λ ∈ Sp (f) Eλ(f) stable par g

3. Déterminer dimC (f).

4. Si les valeurs propres de f sont simples, montrer que C (f) = K[f ].

Corrigé : 1. L'ensemble C (f) contient 0L (E) et est stable par combinaison linéaire par linéarité
de la composition d'où

Le commutant C (f) est un sev de L (E).

2. Si g ∈ C (f), alors, pour tout λ ∈ Sp (f), les endomorphismes g et f − λ id commutent d'où
la stabilité de Eλ(f) = Ker (f − λ id ) par g. Réciproquement, comme f est diagonalisable,

on a E =
⊕

λ∈Sp (f)

Eλ(f)

Soit x ∈ E. On a x =
∑

λ∈Sp (f)

xλ sa décomposition dans la somme directe ci-avant. Pour λ ∈ Sp (f),

on a par stabilité de Eλ(f) par g que g(xλ) ∈ Eλ(f). Il s'ensuit

f ◦ g(x) =
∑

λ∈Sp (f)

f(g(xλ)) =
∑

λ∈Sp (f)

λg(xλ) = g

Ç ∑
λ∈Sp (f)

λxλ

å
= g ◦ f(x)

Ainsi g ∈ C (f) ⇐⇒ ∀λ ∈ Sp (f) Eλ(f) stable par g

Variante : On note Sp (f) = {λ1, . . . λr} et Bk une base de Eλk
(f) pour k ∈ [[ 1 ; r ]]. La fa-

mille B =
r⊎

k=1

Bk est une base de E adaptée à la décomposition E =
r⊕

k=1

Eλk
(f). Si les sev

propres sont stables, alors matBg = diag(A1, . . . ,Ar). La matrice matBg commute clairement
avec diag(λ1Im1 , . . . , λrImr) d'où le résultat.

3. On conserve les notations précédentes. D'après l'équivalence précédente, on obtient

g ∈ C (f) ⇐⇒ matBg = diag(A1, . . . ,Ar)

avec Ak ∈ Mmk
(K) et mk = dimEλk

(f) pour k ∈ [[ 1 ; r ]]. L'application g 7→ matBg étant un
isomorphisme, on a C (f) isomorphe à l'ensemble des matrices diagonales par blocs de la forme
précédente et par conséquent

dimC (f) =
r∑

k=1

dimMmk
(K) =

r∑
k=1

m2
k
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Autrement dit dimC (f) =
∑

λ∈Sp (f)

dimEλ(f)
2

Variante : Pour λ ∈ Sp (f), l'endomorphisme g induit sur Eλ(f) un endomorphisme gλ ∈
L (Eλ(f)). Considérons l'application

Φ :

C (f) −→
∏

λ∈Sp (f)

L (Eλ(f))

g 7−→ (gλ)λ∈Sp (f)

Comme une application est caractérisée par ses restrictions sur les sev d'une décomposition de
E en somme directe, il s'ensuit que Φ est injective. Étant donné (gλ)λ∈Sp (f) ∈

∏
λ∈Sp (f)

L (Eλ(f)),

on pose g : x =
∑

λ∈Sp (f)

xλ 7→
∑

λ∈Sp (f)

gλ(xλ)

où l'écriture x =
∑

λ∈Sp (f)

xλ désigne la décomposition dans
⊕

λ∈Sp (f)

Eλ(f). L'application g ainsi

dé�nie est clairement dans L (E) et véri�e le critère établi à la question précédente, autrement dit
g ∈ C (f) ce qui prouve la surjectivité de Φ. Par conséquent, l'application Φ est un isomorphisme
et on retrouve

dimC (f) =
∑

λ∈Sp (f)

dimL (Eλ(f)) =
∑

λ∈Sp (f)

dimEλ(f)
2

4. Si les valeurs propres simples, on a πf = χf d'où dimK[f ] = dimE et dimEλ(f) = 1 pour
tout λ ∈ Sp (f) d'où

dimC (f) =
∑

λ∈Sp (f)

dimEλ(f) = dimE = dimK[f ]

et comme on a clairement K[f ] ⊂ C (f), on conclut

C (f) = K[f ]

Remarques : Pour f diagonalisable, on peut faire mieux en montrant

f à valeurs propres simples ⇐⇒ C (f) = K[f ]

Il su�t d'observer

dimK[f ] = deg πf ⩽ dimE =
∑

λ∈Sp (f)

dimEλ(f) ⩽
∑

λ∈Sp (f)

dimEλ(f)
2 = dimC (f)

et il y a égalité si toutes les inégalités sont des égalités.

Exercice 12 (***)

Soit E = Mn(K), (A,B) ∈ E2 et on pose φ(M) = AM + MB pour tout M ∈ E. Justi�er que
φ ∈ L (E) puis montrer que si A et B sont diagonalisables, alors φ l'est.

Corrigé : 1. L'application φ est clairement à valeurs dans E et linéaire par linéarité de la somme
et bilinéarité du produit matriciel d'où

φ ∈ L (E)

2. Il existe P,Q dans GLn(K) tel que A = PDP−1 et B = Q∆Q−1 avec D = diag(λi)i∈[[ 1 ;n ]] et
∆ = diag(µi)i∈[[ 1 ;n ]]. On note Mi,j = PEi,jQ

−1 pour tout (i, j) ∈ [[ 1 ; n ]]2. Pour (i, j) ∈ [[ 1 ; n ]]2,
on a
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φ(Mi,j) = AMi,j +Mi,jB = PDEi,jQ
−1 + PEi,j∆Q−1

et DEi,j =
n∑

ℓ=1

λℓ Eℓ,ℓEi,j︸ ︷︷ ︸
δℓ,iEℓ,j

= λiEi,j Ei,j∆ =
n∑

ℓ=1

µℓ Ei,jEℓ,ℓ︸ ︷︷ ︸
δj,ℓEi,ℓ

= µjEi,j

Ainsi φ(Mi,j) = λiPEi,jQ
−1 + µjPEi,jQ

−1 = (λi + µj)Mi,j

La famille (Mi,j)(i,j)∈[[ 1 ;n ]]2 est donc une famille de vecteurs propres de φ et on véri�e sans
di�culté qu'elle est libre ce qui prouve qu'il s'agit d'une base de diagonalisation de φ. Ainsi

A,B diagonalisables =⇒ φ diagonalisable

Exercice 13 (***)

Soit A ∈Mn(C). Montrer

A nilpotente ⇐⇒ ∀k ∈ [[ 1 ; n ]] Tr (Ak) = 0

Corrigé : Le sens direct est immédiat puisque A est trigonalisable et Sp (A) = {0}. Récipro-
quement, supposons Sp (A) ̸= {0} et notons λ1, . . . , λp les valeurs propres non nulles de A. Par
trigonalisation, on a

∀k ∈ [[ 1 ; n ]] Tr (Ak) =
p∑

i=1

mλi
λk
i = 0

En particulier

Ö
1 . . . 1
...

...

λp−1
1 . . . λp−1

p

è
︸ ︷︷ ︸

=V

Ö
mλ1λ1

...
mλpλp

è
=

Ö
0
...
0

è
On a detV =

∏
1⩽i<j⩽p

(λj − λi) ̸= 0

ce qui imposemλi
λi = 0 et qui est absurde puisque les λi sont valeurs propres donc de multiplicité

non nulle et sont supposées non nulles. Par conséquent, on a Sp (A) ⊂ {0} et comme A est
trigonalisable, l'inclusion est une égalité et on obtient la nilpotence de A. Ainsi

A nilpotente ⇐⇒ ∀k ∈ [[ 1 ; n ]] Tr (Ak) = 0

Variante : Supposons Tr (Ak) = 0 pour k ∈ [[ 1 ; n ]]. On en déduit Tr (P(A)) = 0 pour tout
P ∈ Cn[X] véri�ant P(0) = 0. Supposons Sp (A) ̸= {0}. On considère la famille de polynômes
interpolateur (Lλ)λ associés à Sp (A) ∪ {0}. Le cardinal de cet ensemble est au plus n + 1. Les
polynômes Lλ sont donc de degré au plus n. Soit λ ∈ Sp (A) ∖ {0}. On a Lλ(0) = 0 d'où
Tr (Lλ(A)) = 0. Or, il existe P ∈ GLn(C) et T triangulaire supérieure telles que A = PTP−1

d'où

Tr (Lλ(A)) = Tr (Lλ(T)) = mλ = 0 avec mλ ⩾ 1

ce qui est absurde. On en déduit Sp (A) ⊂ {0} d'où l'égalité puisque le spectre complexe est non
vide.
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Exercice 14 (***)

Pour n ⩾ 2, montrer que tout hyperplan de Mn(K) rencontre GLn(K).

Corrigé : Soit H hyperplan de E = Mn(K). Supposons H∩GLn(K) = ∅. Comme In /∈ H, alors
Vect (In) ⊕ H = E. Soit M ∈ E nilpotente. Il existe (A, λ) ∈ H × K tel que M = A + λIn. Soit
X ∈ Ker A avec X ̸= 0, choix possible puisque A n'est pas inversible. On trouve MX = λX. Or,
le spectre d'une matrice nilpotente est réduit à {0} d'où λ = 0 et par conséquent M = A ∈ H.
Ainsi, l'hyperplan contient toutes les matrices nilpotentes. Par stabilité par combinaison linéaire,

il contient donc En,1+
n−1∑
i=1

Ei,i+1, somme de deux matrices triangulaires strictes. Mais cette matrice

est inversible ce qui contredit l'hypothèse faite sur H. Par conséquent

Tout hyperplan de Mn(K) rencontre GLn(K).
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