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Feuille d'exercices n°25

Exercice 1 (*)

Soit E un K-evn. Montrer que

∀(x, y) ∈ E2 ∥x∥+ ∥y∥ ⩽ ∥x+ y∥+ ∥x− y∥

Corrigé : Pour (x, y) ∈ E2, on écrit x =
x+ y

2
+

x− y

2
puis y =

x+ y

2
− x− y

2
et d'après

l'inégalité triangulaire, on obtient

∀(x, y) ∈ E2 ∥x∥+ ∥y∥ ⩽ ∥x+ y∥+ ∥x− y∥

Exercice 2 (**)

Soit E evn et (x, y, z) ∈ E3 tel que x+ y + z = 0. Montrer que

∥x− y∥+ ∥y − z∥+ ∥z − x∥ ⩾
3

2
(∥x∥+ ∥y∥+ ∥z∥)

Corrigé : On a

x =
3x

3
=

1

3
[2x− y − z] =

1

3
[x− y + y − z]

On applique ensuite l'inégalité triangulaire et on procède de même pour y et z. On conclut

∥x− y∥+ ∥y − z∥+ ∥z − x∥ ⩾
3

2
(∥x∥+ ∥y∥+ ∥z∥)

Exercice 3 (*)

Soit E = C 0([ 0 ; 1 ] ,K). Déterminer une condition nécessaire et su�sante sur (f1, . . . , fn) ∈ En

pour que l'application N dé�nie par

N : Kn → R+, (x1, . . . , xn) 7→ ∥
n∑

i=1

xifi∥∞

soit une norme.

Corrigé : L'homogénéité et l'inégalité triangulaire découlent des propriétés de la norme ∥ · ∥∞.

Supposons (f1, . . . , fn) liée. Il existe donc (x1, . . . , xn) ∈ Kn ∖ {0Kn} tel que
n∑

i=1

xifi = 0E d'où

N(x1, . . . , xn) = 0 ce qui contredit la séparation. Il est donc nécessaire que (f1, . . . , fn) soit libre.
Réciproquement, si (f1, . . . , fn) est libre, par séparation de ∥ · ∥∞, on a pour (x1, . . . , xn) ∈ Kn

N(x1, . . . , xn) = 0 =⇒
n∑

i=1

xifi = 0E =⇒ x1 = . . . = xn = 0

Ainsi L'application N est une norme si et seulement si (f1, . . . , fn) est une famille libre.
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Exercice 4 (*)

Soit E = Rn[X], a0, . . . , an des réels et N : E → R dé�nie par

∀P ∈ E N(P) =
n∑

k=0

|P(ak)|

Déterminer une condition nécessaire et su�sante pour que l'application N soit une norme.

Corrigé : L'homogénéité et l'inégalité triangulaire sont immédiates. Si ai = aj avec i ̸= j,

alors on N(P) = 0 avec P =
∏

k∈[[ 0 ;n ]]∖{j}
(X − ak) ̸= 0 donc il faut les ai deux à deux distincts.

Réciproquement, si N(P) = 0, alors P admet n + 1 racines distinctes avec deg P ⩽ n d'où sa
nullité et on conclut

L'application N est une norme si et seulement si les ai sont deux à deux distincts.

Exercice 5 (*)

Soit E = R[X]. On pose

∀P ∈ E N1(P) =
+∞∑
n=0

∣∣P(n)(0)
∣∣ N2(P) = Sup

t∈[ 0 ;1 ]
|P(t)| N3(P) = Sup

t∈[ 1 ;2 ]
|P(t)|

Montrer que N1, N2, N3 sont des normes puis étudier leur équivalence.

Corrigé : L'homogénéité et l'inégalité triangulaire pour N2 et N3 découlent des propriétés de
∥ · ∥∞ sur C ([ 0 ; 1 ] ,R) et C ([ 1 ; 2 ] ,R). Soit P ∈ E tel que N2(P) = 0. Il s'ensuit que P(t) = 0
pour tout t ∈ [ 0 ; 1 ] d'où une in�nité de racines pour P et par conséquent P = 0. Le même
argument vaut pour N3. L'homogénéité est immédiate pour N1. Soit P ∈ E tel que N1(P) = 0.
On a donc P(n)(0) = 0 pour tout n entier ce qui prouve que 0 est racine de P de multiplicité
in�nie donc P = 0. En�n, soit (P,Q) ∈ E2. On a

N1(P + Q) =
+∞∑
n=0

∣∣(P + Q)(n)(0)
∣∣ ⩽ +∞∑

n=0

[∣∣P(n)(0)
∣∣+ ∣∣Q(n)(0)

∣∣] = N1(P) + N1(Q)

Il n'y a aucune di�culté de convergence, les sommes étant �nies. On conclut

Les applications N1,N2,N3 sont des normes.

Avec Pn = Xn pour n entier, on trouve

N1(Pn) = n! N2(Pn) = 1 N3(Pn) = 2n

Ainsi
N3

N2

(Pn) −−−→
n→∞

+∞ N1

N2

(Pn) −−−→
n→∞

+∞ N1

N3

(Pn)∼
√
2πn

( n

2e

)n
−−−→
n→∞

+∞

On conclut Les normes N1, N2 et N3 ne sont pas équivalentes.

Remarque : Pour comparer complètement ces normes, il faut étudier les deux inégalités de la
dé�nition de l'équivalence des normes. Avec Pn = (2− X)n pour n entier, on a

N2(Pn) = 2n N3(Pn) = 1 =⇒ N3

N2

(Pn) −−−→
n→∞

+∞

Soit P =
+∞∑
n=0

anX
n avec (an)n une suite presque nulle. On a
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N2(P) ⩽
+∞∑
n=0

|an| et N1(P) =
+∞∑
n=0

n! |an|

Ainsi ∀P ∈ E N2(P) ⩽ N1(P)

Remarque : La constante est optimale. Avec P = 1, on trouve N1(P) = N2(P) = 1.

On a N3(P) ⩽
+∞∑
n=0

|an| 2n et N1(P) =
+∞∑
n=0

n! |an|

Par récurrence immédiate, on montre que 2n ⩽ 2n! pour tout n entier et il vient

∀P ∈ E N3(P) ⩽ 2N1(P)

Remarque : La constante est optimale. Avec P(X) = X, on a N3(P) = 2 et N1(P) = 1.

Exercice 6 (*)

Soit E = C 1([ 0 ; 1 ] ,R). On pose

∀f ∈ E N(f) = ∥f∥∞ + ∥f ′∥∞
Montrer que N est une norme puis étudier l'équivalence de N et ∥ · ∥∞.

Corrigé : L'application ∥ · ∥∞ étant une norme sur B([ 0 ; 1 ] ,R), il en découle sans di�culté
que N est une norme. On a clairement ∥ · ∥∞ ⩽ N mais ∥ · ∥∞ n'est pas plus �ne que N. Pour n
entier, posant fn : t 7→ tn, on trouve

N(fn) = 1 + n et ∥fn∥∞ = 1

D'où
N(fn)

∥fn∥∞
−−−→
n→∞

+∞

Ainsi Les normes N et∥ · ∥∞ ne sont pas équivalentes.

Exercice 7 (**)

On pose

∀θ ∈ R R(θ) =

Å
cos θ − sin θ
sin θ cos θ

ã
∀(n, θ) ∈ N∗ × R Sn(θ) =

1

n

n−1∑
k=0

R(θ)k

Étudier la convergence de la suite (Sn(θ))n⩾1.

Corrigé : Soit θ réel avec θ /∈ 2πZ. La matrice R(θ) est une matrice de rotation. Ainsi, on a
R(θ)k = R(kθ) pour tout k entier. Pour n entier non nul, il vient par téléscopage

(I2 − R(θ))Sn(θ) =
1

n
(I2 − R(θ)n) =

1

n
(I2 − R(nθ))

Comme I2 − R(θ) ∈ GL2(R) et que les coe�cients de R(nθ) sont bornés, on trouve

Sn(θ) = (I2 − R(θ))−1 1

n
(I2 − R(nθ)) −−−→

n→∞
0

Ainsi ∀θ /∈ 2πZ Sn(θ) −−−→
n→∞

0 et ∀θ ∈ 2πZ Sn(θ) = I2
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Variante : Soit θ réel. La matrice R(θ) est une matrice de rotation. Ainsi, on a R(θ)k = R(kθ)
pour tout k entier. Par suite, pour n entier non nul

Sn(θ) =
1

n

n−1∑
k=0

Å
cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

ã
Pour θ /∈ 2πZ, on a

1

n

n−1∑
k=0

e ikθ =
1

n

1− e inθ

1− e iθ
=⇒

∣∣∣∣ 1nn−1∑
k=0

e ikθ

∣∣∣∣ ⩽ 2

n |1− e iθ|
−−−→
n→∞

0

Comme |Re z| ⩽ |z| et |Im z| ⩽ |z| pour tout z ∈ C, il s'ensuit que Sn(θ) −−−→
n→∞

0. Pour θ ∈ 2πZ,
on a R(θ) = I2 et on conclut

∀θ /∈ 2πZ Sn(θ) −−−→
n→∞

0 et ∀θ ∈ 2πZ Sn(θ) = I2

Exercice 8 (*)

Soit E = {f ∈ C 2([ 0 ; π ] ,R), f(0) = f ′(0) = 0}. On pose

∀f ∈ E N(f) = ∥f + f ′′∥∞
Montrer que N est une norme puis étudier l'équivalence de N et ∥ · ∥∞.

Corrigé : L'homogénéité et l'inégalité triangulaire découlent des propriétés de la norme ∥ · ∥∞
sur C ([ 0 ; π ] ,R). Véri�ons la séparation. Soit f ∈ E telle que N(f) = 0. Ainsi, la fonction f est
solution de l'équation di�érentielle f ′′ + f = 0 d'où f = λ cos+µ sin avec λ, µ réels. Avec les
conditions f(0) = f ′(0) = 0, on obtient λ = µ = 0 d'où la séparation. On pose

∀n ⩾ 2 ∀t ∈ [ 0 ; π ] fn(t) = tn

La suite (fn)n est à valeurs dans E et on trouve

∀n ⩾ 2 ∥fn∥∞ = πn et N(fn) = Sup
t∈[ 0 ;π ]

[tn + n(n− 1)tn−2] =

πn + n(n− 1)πn−2 ∼
n→+∞

n2πn−2

D'où
∥fn∥∞
N(fn)

−−−→
n→∞

0

Ainsi Les normes ∥ · ∥∞ et N ne sont pas équivalentes.

Remarque : On a montré que ∥ · ∥∞ n'est pas plus �ne que N. En revanche, on peut montrer
que N est plus �ne que ∥ · ∥∞ mais c'est plus technique. Pour f ∈ E, notant g = f ′′ + f , on
trouve par variation de la constante (voir [Équations Di�érentielles Linéaires])

∀t ∈ [ 0 ; π ] f(t) =

∫ t

0

g(s) sin(t− s) ds

On en déduit ∥f∥∞ ⩽ π∥g∥∞ = πN(f)
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Exercice 9 (**)

Soit E = C 1([ 0 ; 1 ] ,R). On dé�nit l'application N sur E par

∀f ∈ E N(f) =

 
f(0)2 +

∫ 1

0

f ′(t)2 dt

Montrer que N est une norme puis la comparer à ∥ · ∥∞.

Corrigé : L'application N est la norme euclidienne associée à (f, g) 7→ f(0)g(0)+

∫ 1

0

f ′(t)g′(t)dt.

On véri�e sans di�culté qu'il s'agit d'un produit scalaire. Ainsi

L'application N est une norme sur E.

Soit n entier. Pour fn(t) = tn avec t ∈ [ 0 ; 1 ], on a

∥fn∥∞ = 1 N(fn) =

 ∫ 1

0

n2t2n−2 dt =
n√

2n− 1

Ainsi Les normes N et ∥ · ∥∞ ne sont pas équivalentes.

Soit f ∈ E et x ∈ [ 0 ; 1 ]. On a f(x) = f(0) +

∫ x

0

f ′(t) dt d'où

|f(x)| ⩽ |f(0)|+
∫ x

0

|f ′(t)| dt ⩽ |f(0)|+
∫ 1

0

|f ′(t)| dt

Avec l'inégalité (a+ b)2 ⩽ 2(a2 + b2) pour a, b réels, on trouve

|f(x)|2 ⩽ 2

(
f(0)2 +

Ç∫ 1

0

|f ′(t)| dt
å2
)

D'après l'inégalité de Cauchy-Schwarz, on a

Ç∫ 1

0

|f ′(t)| dt
å2

⩽
∫ 1

0

f ′(t)2 dt et on conclut

∀f ∈ E ∥f∥∞ ⩽
√
2N(f)

Remarques : (a) La constante est optimale. Pour f : t 7→ t + 1, on trouve ∥f∥∞ = 2 et
N(f) =

√
2.

(b) On peut avoir l'intuition que N est plus �ne que ∥ · ∥∞ : le contrôle de la position initiale

et de l'� énergie � de la fonction f avec le terme
∫ 1

0

f ′(t)2 dt contraint les valeurs prises par la

fonction et donc sa norme in�nie.

Exercice 10 (**)

Soit E = Mn(K).

1. Déterminer si l'une des deux normes ∥ · ∥1 et ∥ · ∥∞ véri�e l'inégalité dite de norme

d'algèbre, à savoir

∀(A,B) ∈ E2 ∥AB∥ ⩽ ∥A∥∥B∥

2. On suppose E muni d'une norme ∥ · ∥. Montrer qu'il existe une constante C > 0 telle que

∀(A,B) ∈ E2 ∥AB∥ ⩽ C∥A∥∥B∥
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Corrigé : 1. Soit (A,B) ∈ E2. On a

∥AB∥1 =
∑

1⩽i,j⩽n

∣∣∣∣ n∑
k=1

ai,kbk,j

∣∣∣∣ ⩽ ∑
1⩽i,j,k⩽n

|ai,k| |bk,j| ⩽
∑

1⩽i,j,k,ℓ⩽n

|ai,j| |bk,l|

d'où ∀(A,B) ∈ E2 ∥AB∥1 ⩽ ∥A∥1∥B∥1

Pour n ⩾ 2, considérant J la matrice constituée de 1, on a J2 = nJ et par suite

∥J2∥∞ = n∥J∥∞ = n > 1 = ∥J∥2∞
2. L'espace E étant de dimension �nie, les normes sont équivalentes. Il existe α, β > 0 tel que
α∥ · ∥1 ⩽ ∥ · ∥ ⩽ β∥ · ∥1. Ainsi

∀(A,B) ∈ E2 ∥AB∥ ⩽ β∥AB∥1 ⩽ β∥A∥1∥B∥1 ⩽
β

α2
∥A∥∥B∥
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