Préparation à l'interrogation n°09

1 Étude asymptotique

- 1. Développement limité à l'ordre 2 en zéro de $\frac{1}{x} \frac{1}{\operatorname{th}(x)}$;
- 2. Développement limité à l'ordre 2 en zéro de

$$1 - \cos(t)^n = 1 - \left(1 - \frac{t^2}{2} + \mathrm{o}(t^2)\right)^n = 1 - \left(1 - \frac{nt^2}{2} + \mathrm{o}(t^2)\right) = \frac{nt^2}{2} + \mathrm{o}(t^2)$$

2 Dérivation

Dérivée première et seconde de f définie par

$$\forall t \in]-1;1[$$
 $f(t) = \operatorname{sh}\left(\operatorname{Arcsin}\left(t\right)\right)$

3 Trigonométrie

1.
$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$
 2. $\sin(a)\sin(b) = \frac{\cos(a-b) - \cos(a+b)}{2}$

4 Calcul intégral

1.
$$\int_{-\infty}^{x} \frac{dt}{1-t^2} = \int_{-\infty}^{x} \frac{1+t+1-t}{2(1-t)(1+t)} dt = \frac{1}{2} \int_{-\infty}^{x} \left[\frac{1}{1-t} + \frac{1}{1+t} \right] dt = \frac{1}{2} \ln \left(\left| \frac{1+x}{1-x} \right| \right);$$

2.
$$\int_{-\infty}^{x} \ln(t) dt = [t \ln(t)]^{x} - \int_{-\infty}^{x} dt = x \ln(x) - x;$$

3. Formule de Taylor avec reste intégral.

5 Formules d'Euler

Soit θ réel. On a

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \qquad \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \qquad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

6 Formules

1. Inégalité de Taylor-Lagrange

2.
$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^k y^{n-1-k}$$

7 Séries numériques

- $1. \ \ Comparaison \ s\'erie/int\'egrale\ ;$
- 2. Critère de d'Alembert;
- 3. Critère des séries alternées;
- 4. Contrôle du reste d'une série alternée.

8 Exercice type

Équivalent $\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \underset{n \to +\infty}{\sim} \frac{1}{n}$ (voir cours).

9 Exercice type

Contre exemple au théorème de Rolle pour une fonction à valeurs dans un \mathbb{R} -ev de dimension ≥ 2 (voir cours).

10 Exercice type

Soit $E = \mathcal{M}_n(\mathbb{K})$ avec $n \geq 2$. La norme $\|\cdot\|_1$ est une norme d'algèbre, c'est-à-dire sous-multiplicative

$$\forall (A, B) \in E^2$$
 $||AB||_1 \le ||A||_1 ||B||_1$

mais ce n'est pas une norme d'opérateur.

Corrigé : Soit $(A, B) \in E^2$. On a

$$\|AB\|_1 = \sum_{1 \le i,j \le n} \left| \sum_{k=1}^n a_{i,k} b_{k,j} \right| \le \sum_{1 \le i,j,k \le n} |a_{i,k}| |b_{k,j}| \le \sum_{1 \le i,j,k,\ell \le n} |a_{i,j}| |b_{k,l}|$$

d'où

$$\forall (A, B) \in E^2$$
 $\|AB\|_1 \leqslant \|A\|_1 \|B\|_1$

On a $\|\mathbf{I}_n\|_1 = n \neq 1$ ce qui prouve qu'il ne s'agit pas d'une norme d'opérateur.

11 Exercice type

Soit $E = \mathcal{M}_n(\mathbb{K})$ avec $n \ge 2$. Montrer \mathcal{N} l'ensemble des matrices nilpotentes de E est un fermé non compact d'intérieur vide.

Corrigé : L'indice de nilpotence est majoré par n. Notant $\varphi : E \to E, M \to M^n$ continue par continuité du produit matriciel, on a $\mathcal{N} = \varphi^{-1}(\{0\})$. Puis, la suite $(kE_{1,n})_k$ est à valeurs dans \mathcal{N} et non bornée. Enfin, pour $A \in \mathcal{N}$, on a par densité de $GL_n(\mathbb{K})$ que $B(A, \varepsilon) \cap GL_n(\mathbb{K}) \neq \emptyset$ pour tout $\varepsilon > 0$. Il en résulte qu'aucune boule ouverte n'est incluse dans \mathcal{N} puisque les matrices nilpotentes sont non inversibles. On conclut

L'ensemble ${\mathcal N}$ est un fermé non compact d'intérieur vide.

12 Exercice type

Soit E un K-evn de dimension finie et $(x_n)_n \in E^{\mathbb{N}}$ vérifiant

$$\exists k \in [0; 1[\quad | \quad \forall n \in \mathbb{N}^* \qquad ||x_{n+1} - x_n|| \leqslant k ||x_n - x_{n-1}||$$

Alors, la suite $(x_n)_n$ converge.

Corrigé: Voir cours.

13 Questions de cours

Séries et fonctions vectorielles, graphes usuels.